Answer:
(a). The magnitude of the flux is 47.3 μWb.
(b). If the sign of magnetic flux is negative then the magnetic flux will be inward.
Step-by-step explanation:
Given that,
Radius = 12.0 cm
Length = 80.0 cm
Magnetic flux = 25.0 mWb
Magnetic field = 1.60 mT
(a). We need to calculate the magnitude the net magnetic flux through the curved surface
Using formula of magnetic flux
The total net magnetic flux is equal to the sum of the magnetic flux the first end add magnetic flux through the second end add magnetic flux the third surface
....(I)
According to Gauss's law
![\int{\vec{B}\cdot\vec{dA}}=0](https://img.qammunity.org/2020/formulas/physics/college/4vy7twz8addpdm5kn0c3615mp7mf4nerfo.png)
Here,
![\phi_(1)=-25\ mWb](https://img.qammunity.org/2020/formulas/physics/college/kge59e8ulnaeft67ej2pe89tkp1pw8q81n.png)
Negative sign show the inward flux
Now,
![\phi_(2)=\vec{B}\cdot\vec{A}](https://img.qammunity.org/2020/formulas/physics/college/pxhfhuhbzk5oeigl7iu7wphmgsidil8r69.png)
![\phi_(2)=\pi r^2B](https://img.qammunity.org/2020/formulas/physics/college/kpiw4j7m14jkebfu3efaxudmifyrdhnjc3.png)
Put the value into the formula
![\phi_(2)=\pi*(12.0*10^(-2))^2*1.60*10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/sv1em6aycg7jark6rc7bt6ih4ju9mvgtaw.png)
![\phi_(2)=0.0723*10^(-3)\ Wb](https://img.qammunity.org/2020/formulas/physics/college/j73sj5h6xrnuq98x17r9klmh151wip3jlc.png)
Here, The direction of magnetic field is outward.
We need to calculate the third flux
![\phi_(3)=-\phi_(1)-\phi_(2)](https://img.qammunity.org/2020/formulas/physics/college/a9sdbey8z0sv8hyr9w4u44hzbtxxjmrl3b.png)
![\phi_(3)=-25.0\ mu Wb+72.3\ \mu Wb](https://img.qammunity.org/2020/formulas/physics/college/ch1ulrasyrkr6ka0x6rm1cjf46ca8t8w26.png)
![\phi_(3)=-47.3\ \mu Wb](https://img.qammunity.org/2020/formulas/physics/college/gwh52q91cubdzgaho7fe550hf2r4ix12bt.png)
The magnitude of the flux is 47.3 μWb.
(b). If the sign of magnetic flux is negative then the magnetic flux will be inward.
Hence, This is the required solution.