Answer:
The angular frequency of oscillation of the mass is 11 rad/s.
Step-by-step explanation:
Given that,
Charge = 2μC
Radius R₁= 8 cm
Radius R₂ = 16 cm
Angular frequency = 22 rad/s
We need to calculate the angular frequency of oscillation of the mass
The electric field produced along x axis
![E=(kqx)/(√(R^2+x^2))](https://img.qammunity.org/2020/formulas/physics/college/k855pe4jp9o6rreoaulxchpyhyviw5fpv9.png)
![E=\frac{kqx}{\sqrt{R^2(1+(x^2)/(R^2))^2}}](https://img.qammunity.org/2020/formulas/physics/college/16hyolxsu7g2lqdr1jfmusipvl7y8wtn83.png)
![E=(kqx)/(R^3)](https://img.qammunity.org/2020/formulas/physics/college/oa2de78f6b17m60lbwtev03zexz73mpnkt.png)
The force on the mass is
![F=Eq](https://img.qammunity.org/2020/formulas/physics/college/mwrrl46xfpoux25ukexfqqe7rip78jlmet.png)
....(I)
For,x<<R
Now, using centripetal force
![F = (mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/93a9bwidvzm9ot5ynfe4gf665rm4vah8ld.png)
Put the value of F in equation (I)
![(mv^2)/(r)=(kQq)/(R^3)](https://img.qammunity.org/2020/formulas/physics/college/8ge0en8ib9jbg4q8azg0zhug9i3z4f35y6.png)
We know that,
![v=r\omega](https://img.qammunity.org/2020/formulas/physics/college/fxyi9f0hnced6di1q7lmb1jkcmsixtglsw.png)
![m\omega^2r=(kQq)/(R^3)](https://img.qammunity.org/2020/formulas/physics/college/yjy41gujd5qlyd7xyaxqlce7g0ghg0z35c.png)
![\omega^2=(kQq)/(mrR^3)](https://img.qammunity.org/2020/formulas/physics/college/15tgwshi22fd4gfe7mtq504bjq5urn74ae.png)
For, r<<R
![\omega^2=(kQq)/(mR^3)](https://img.qammunity.org/2020/formulas/physics/college/deqsxmxqm8irib6aax6f794oca69u0gfxe.png)
![\omega=\sqrt{(kQq)/(mR^3)}](https://img.qammunity.org/2020/formulas/physics/college/ht6urdgnldbqpzjmjxfdef9n17803oubon.png)
Here,
![\omega\propto\sqrt{(q)/(R^3)}](https://img.qammunity.org/2020/formulas/physics/college/k181kohxfbgrbbvkejzgfa0xthcdpphnhg.png)
The ratio of angular frequency
![(\omega)/(\omega_(1))=\sqrt{((q)/(R^3))/((q_(1))/(R_(1)^3))}](https://img.qammunity.org/2020/formulas/physics/college/528fd7rntig5atk3lk0nt1j9dj6tgs2wq6.png)
![(\omega)/(\omega')=\sqrt{(R^3*2q)/(2R^3* q)}](https://img.qammunity.org/2020/formulas/physics/college/90evpbzyywenbnavphnymvx41lrmckeebq.png)
![\omega=\sqrt{(8^3*2*2*10^(-6))/(8*8^3*2*10^(-6))}*\omega'](https://img.qammunity.org/2020/formulas/physics/college/rvxuvox9boxiesepoftjlq9n10b6v5hmq7.png)
![\omega=0.5\omega'](https://img.qammunity.org/2020/formulas/physics/college/ko72pbr1j0i5kfw84ip1xffdur41mxis78.png)
Put the value of
![\omega=(1)/(2)*22](https://img.qammunity.org/2020/formulas/physics/college/d9n6ue7zfz4zb3zvcabwn0nxa37rbsluob.png)
![\omega=11\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/dea6t0arhwvxbrdsswwrcpyoakge6w56ie.png)
Hence, The angular frequency of oscillation of the mass is 11 rad/s.