Answer:
a) pH = 4.635
b) 0.15 mol NaOH is added:
⇒ pH = 4.698
c) molar mass (Mw) lauryl alcohol in benezen solution:
⇒ Mw = 46.545g C12H26O / mol C6H6
Step-by-step explanation:
∴ C CH3COONa = 1.4 M
∴ Ka = 1.8 E-5 = ([ H3O+ ] * [ CH3COO- ]) / [ CH3COOH ]
∴ C CH3COOH = 1.1 M
∴ Kw = [ H3O+ ] * [ OH- ] = 1 E-14
a) pH sln:
mass balance:
⇒ C CH3COOH + C CH3COONa = [ CH3COO- ] + [ CH3COOH ] = 1.1 + 1.4 = 2.5 M
charge balance:
⇒ [ H3O+ ] + [ Na+ ] = [ CH3COO- ] + [ OH- ].......[ OH- ] is neglected, comes from water.
∴ [ Na+ ] ≅ C CH3COONa = 1.4 M
⇒ [ H3O+ ] + 1.4 = [ CH3COO- ]
replacing in Ka:
⇒ 1.8 E-5 = ( [ H3O+ ] * ( [ H3O+ ] + 1.4 ) ) / ( 2.5 - ( [ H3O+ ] + 1.4 ) )
⇒ [ H3O+ ]² + 1.4 [ H3O+ ] - 1.98 E-5 = 0
⇒ [ H3O+ ] = 2.314 E-5 M
⇒ pH = 4.635
b) 0.15 M NaOH is added:
- CH3COOH + NaOH ↔ CH3COONa + H2O
∴ m NaOH = 0.15 mol
∴ C CH3COOH = (( 1 * 1.1)mol CH3COOH - 0.15mol NaOH ) / 1 L
⇒ C CH3COOH = 0.95 mol/L
∴ C CH3COONa = (( 1 * 1.4 ) + 0.15 ) / 1 L
⇒C CH3COONa = 1.55 mol/L
⇒ Ka = ([ H3O+ ] * ( 1.55 + [ H3O+ ] )) / ( 2.5 - ( [ H3O+ ] + 1.55)) = 1.8 E-5
⇒ [ H3O+ ]² + 1.55 [ H3O+ ] - 1,71 E-5 = 0
⇒ [ H3O+ ] = 2.003 E-5 M
⇒ pH = 4.698
c) C12H26O + C6H6 ↔ C18H32O
⇒ sln: 5g C12H26O / 0.100 Kg C6H6 = 50 gC12H26O / kgC6H6
∴ benzene:
∴ m (molality) ≡ moles solute / Kg solvent ≡ mol/Kg
⇒ m benzene = 5.5 Kg°C / 5.12 °C/m
⇒ m Benzene = 1.074 mol/Kg
⇒ Mw C12H26O = 50g C12H26O / Kg C6H6 * ( Kg C6H6 / 1.074 mol C6H6)
⇒ Mw C12H26O = 46.545 gC12H26O / mol C6H6