Answer:
![C=18w+30](https://img.qammunity.org/2020/formulas/mathematics/college/790ccienht3lj7wkktfwf7b43gs0rlsw7o.png)
Explanation:
We are given that The monthly charge for a waste collection service is 1830 dollars for 100 kg of waste
So,
![(x_1,y_1)=(100,1830)](https://img.qammunity.org/2020/formulas/mathematics/college/164arf0ruoglfy1zjzc88u1zszjk892rfh.png)
We are also given that The monthly charge for a waste collection service is 2460 dollars for 135 kg of waste.
So,
![(x_2,y_2)=(135,2460)](https://img.qammunity.org/2020/formulas/mathematics/college/c9y2wu0ec1w6oy5nxu92qosy3oln5r28zv.png)
We are supposed to find a linear model for the cost, C, of waste collection as a function of the number of kilograms, w.
So, we will use two point slope form :
Formula :
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/n0rzjdpc5cn2wzcw2wa5up506xbiy78220.png)
Substitute the values
![y-1830=(2460-1830)/(135-100)(x-100)](https://img.qammunity.org/2020/formulas/mathematics/college/ynacej5856ez08kchohuvjw3xa9oyzllok.png)
![y-1830=18(x-100)](https://img.qammunity.org/2020/formulas/mathematics/college/m504puh7u9yajm86q82f6d63uet2s7u38r.png)
![y-1830=18x-1800](https://img.qammunity.org/2020/formulas/mathematics/college/lfsubmad7r3q341npp1hl0rg9ya0ccitvs.png)
![y=18x-1800+1830](https://img.qammunity.org/2020/formulas/mathematics/college/ube93s94qrnabqve7rfwfxuuqzx4da6kde.png)
![y=18x+30](https://img.qammunity.org/2020/formulas/mathematics/college/xs9oldq0ftsb9temcy3nef9z0ivf9erchz.png)
y denotes the cost
x denotes the weight
So, Replace y with C and x with w
![C=18w+30](https://img.qammunity.org/2020/formulas/mathematics/college/790ccienht3lj7wkktfwf7b43gs0rlsw7o.png)
So, a linear model for the cost, C, of waste collection as a function of the number of kilograms, w is
![C=18w+30](https://img.qammunity.org/2020/formulas/mathematics/college/790ccienht3lj7wkktfwf7b43gs0rlsw7o.png)