Answer:
![\text{(a) }8.187 * 10^(-14)\text{ J}; \text{(b) 49 300 kJ/mol; (c) } 5.110 * 10^(5)\text{ eV}](https://img.qammunity.org/2020/formulas/chemistry/college/zy4g7mw9zpkkbyef73gz7eeeon1az5rliu.png)
Step-by-step explanation:
This question involves the conversion of mass into energy: E = mc².
e + p ⟶ γ + γ
Each particle has the same mass so, in terms of mass, we can write
2e ⟶ 2γ or
e ⟶ γ
Thus, we can just convert the mass of an electron to its energy equivalent.
(a) Energy in joules
![E= 9.109 * 10^(-28)\text{ kg} * \left (2.998 * 10^(8)\text{ m$\cdot$s}^(-1)\right )^(2) = \mathbf{8.187 * 10^(-14)}\textbf{ J}](https://img.qammunity.org/2020/formulas/chemistry/college/a3yokfvpxdrxgr4wj0z4szkr4eanno593l.png)
(b) Energy in kilojoules per mole
![E =8.187 * 10^(-14)\text{ J } * \frac{\text{ 1 k}}{\text{1000 J}} \,* \,\frac{6.022 * 10^(23)}{\text{1 mol}} = 4.930 * 10^(7)\text{ J/mol}= \textbf{49 300 kJ/mol}](https://img.qammunity.org/2020/formulas/chemistry/college/jpjqradphr35jr5akfd81w4h690ppkbw7e.png)
(c) Energy in electron volts
![E = 8.187 * 10^(-14)\text{ J}* \frac{6.242 * 10^(18)\text{ eV}}{\text{1 J}} = \mathbf{5.110 * 10^(5)}\textbf{ eV}](https://img.qammunity.org/2020/formulas/chemistry/college/bw8p3lq1pw8ly6gkvz9osmvi1xdu6w7xcg.png)