15.9k views
4 votes
(Need Help!) 2. A cell phone provider charges $30 each month to have a cell on their plan, but their talk and text are not free. It costs $0.05 for every minute of talk and $0.10 for every text sent. There is no charge for receiving texts.

a. Write an algebraic expression that represents the monthly costs of the plan, given t represents the number of minutes and x represents the number of texts sent for each month. b. How much would the plan cost for each of the scenarios below? Talk (mins) Texts Sent Total Cost
100 50
124 26
75 75
80 95
50 100

User ULYsseus
by
5.2k points

2 Answers

3 votes

x = number of text messages sent

0.2x+40=50

0.2x = 10

5(0.2x) = 5(10)

x = 50

Therefore, 50 text messages would have to be sent or received in order for the plans to cost the same each month. I hope this helps please give me brianlist

User MikeNereson
by
5.0k points
2 votes

Answer:

A cell phone provider charges $30 each month.

It costs $0.05 for every minute of talk and $0.10 for every text sent. There is no charge for receiving texts.

Part A:

Let t represents the number of minutes and x represents the number of texts sent for each month. Let T represent total cost.

Equation becomes:


T=0.05t+0.10x+30

Part B:

Talk (mins)(t) Texts(x)

100 50

124 26

75 75

80 95

50 100

When t = 100 , x = 50


T=0.05(100)+0.10(50)+30

T = $40

When t = 124 , x = 26


T=0.05(124)+0.10(26)+30

T = $38.80

When t = 75 , x = 75


T=0.05(75)+0.10(7526)+30

T = $41.25

When t = 80 , x = 95


T=0.05(80)+0.10(95)+30

T = $43.50

When t = 50 , x = 100


T=0.05(50)+0.10(100)+30

T = $42.50

User Moni Viki
by
4.6k points