56.1k views
4 votes
Solve x2 = 12x – 15 by completing the square. Which is the solution set of the equation? (negative 6 minus StartRoot 51 EndRoot comma negative 6 + StartRoot 51 EndRoot) (negative 6 minus StartRoot 21 EndRoot comma negative 6 + StartRoot 21 EndRoot) (6 minus StartRoot 51 EndRoot comma 6 + StartRoot 51 EndRoot) (6 minus StartRoot 21 EndRoot comma 6 + StartRoot 21 EndRoot)

1 Answer

6 votes

Answer:

LAST OPTION:
(6-√(21),6+√(21))

Explanation:

1. Subtract
12x from both sides of the equation:


x^2-12x= 12x- 15-12x\\\\x^2-12x=-15

2. Since
b=12:


((b)/(2))^2=((12)/(2))^2=(6)^2

3. Now can complete the square. Add
(6)^2 to both sides of the equation:


x^2-12x+6^2=-15+6^2

4. Simplifying:


(x-6)^2=21

5. Solve for "x":


√((x-6)^2)=\±√(21)\\\\x-6=\±√(21)\\\\x=6\±√(21)\\\\x_1=6+√(21)\\\\x_2=6-√(21)

6. The solution set is:


(6-√(21),6+√(21))

User ChrisCa
by
9.2k points