Answer:
SA:V of the bacterium to that of the amoeba
![= 300](https://img.qammunity.org/2020/formulas/biology/high-school/do7sy27mwjh1km4ctarmxnhwsq6seja82o.png)
Step-by-step explanation:
Surface area (SA) of a sphere
![= 4\pi r^2](https://img.qammunity.org/2020/formulas/biology/college/3ejt4wdtj35ijkwu67ctqwkq2wsbypyuko.png)
Volume (V) of a sphere
![= (4)/(3) \pi r^3](https://img.qammunity.org/2020/formulas/biology/college/tsojzq7c4a1qm99i6fknf4x4za1bbtfiu6.png)
Surface area to volume ratio is equal to
![(SA)/(V) = (4\pi r^2)/((4)/(3) \pi r^3) \\(SA)/(V) =(3)/(r)](https://img.qammunity.org/2020/formulas/biology/college/w85spuv4llkrvi6dzxzo08ajmscon2oloy.png)
a) For bacteria of diameter
μm
mm
![((SA)/(V) )_1= (3)/(r) \\((SA)/(V) )_1=(3)/(0.0005) \\](https://img.qammunity.org/2020/formulas/biology/college/68bfys57tmo9j6onnh5qorcakcgj2jbn33.png)
![= 6000](https://img.qammunity.org/2020/formulas/biology/college/6yho81bcfbnrc6rtvv4m4q92sz1yztye6i.png)
This means there is
unit surface area per unit volume.
b) For amoeba with a diameter of
μm
mm
![((SA)/(V) )_2= (3)/(r) \\((SA)/(V) )_2=(3)/(0.15) \\](https://img.qammunity.org/2020/formulas/biology/college/n682t90zr0clli2sxqxkbrr1oble5zlqgy.png)
![= 20](https://img.qammunity.org/2020/formulas/biology/college/1cqwvhlsfeujlhvkcet2cqndcm8l1tco5e.png)
The ratio for SA:V of the bacterium to that of the amoeba
![= (6000)/(20) \\= 300](https://img.qammunity.org/2020/formulas/biology/college/g6rrxm3dowucfpnshhumhn2dt0fu3vm3u6.png)