Answer: 0.0455
Explanation:
Given : Weekly demand at a grocery store for a breakfast cereal is normally distributed .
Population mean :
![\mu=800](https://img.qammunity.org/2020/formulas/mathematics/college/ste3j5tsj3hcu3buf5hu9xnn484eq4ydma.png)
Standard deviation :
![\sigma=75](https://img.qammunity.org/2020/formulas/mathematics/college/y382de0y37o2h3xey7q9fa1x5dy1pszrjf.png)
To find : Probability that the weekly demand is less than 650 boxes or greater than 950 boxes.
We first find z-score corresponds to 650 and 950.
Since
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
Then , for x= 650
![z=(650-800)/(75)=-2](https://img.qammunity.org/2020/formulas/mathematics/college/xyqsp7db6oood5o7gbip3djf2odyy44on5.png)
x=950
![z=(950-800)/(75)=2](https://img.qammunity.org/2020/formulas/mathematics/college/65hwmby4xejio8bd4ge6bqc5788vfbrx9e.png)
Then , the probability that the weekly demand is less than 650 boxes or greater than 950 boxes is given :-
![P(z<-2)+P(z>2)=P(z<-2)+1-P(z<2)\\\\=0.0227501+1- 0.9772498=0.0455003\approx0.0455](https://img.qammunity.org/2020/formulas/mathematics/college/zmx22eit7zdmet7ps48xlczh4yhf3c5vxu.png)
Hence, the probability that the weekly demand is less than 650 boxes or greater than 950 boxes = 0.0455