Answer:
The answer is
![\sqrt{(6)/(5)}](https://img.qammunity.org/2020/formulas/mathematics/college/cj025gft0nl276ca5wn4bb3mjxrmiqrtmu.png)
Explanation:
To calculate the volumen of the solid we solve the next double integral:
![\int\limits^1_0\int\limits^1_0 {12xy^(2) } \, dxdy](https://img.qammunity.org/2020/formulas/mathematics/college/rm5z09xqtq2n237f0nfx4ov2fegx02hs33.png)
Solving:
![\int\limits^1_0 {12x} \, dx \int\limits^1_0 {y^(2) } \, dy](https://img.qammunity.org/2020/formulas/mathematics/college/w7w2qujxdfxdi57cf3wqq9y7kytwwigp19.png)
![[6x^(2) ]{{1} \atop {0}} \right. * [(y^(3))/(3)]{{1} \atop {0}} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/t3f47582mz1z7n9lqjm0y7zymx0dqg89lf.png)
Replacing the limits:
![6*(1)/(3) =2](https://img.qammunity.org/2020/formulas/mathematics/college/pc1takel4adkxdz6xortigije1wzecup00.png)
The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤
![(1)/(m)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fm0forv6d1h9p931q6hrem8qwkdli0n632.png)
Solving the double integral with these new limits we have:
![\int\limits^(1)/(m) _0\int\limits^(1)_(mx) {12xy^(2) } \, dxdy](https://img.qammunity.org/2020/formulas/mathematics/college/na03ogmogigb0eq0tznhqgs2qlo8hc03x8.png)
This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^(1)/(m)_0 [{12x (y^(3))/(3)}]{{1} \atop {mx}} \right.\, dx =\int\limits^(1)/(m)_0 [{4x y^(3 )]{{1} \atop {mx}} \right.\, dx](https://img.qammunity.org/2020/formulas/mathematics/college/qt87j7hor1xjsktrd3wv9yr5yg9ophgj60.png)
Replacing the limits:
![\int\limits^(1)/(m)_0 {4x(1-(mx)^(3) )\, dx =\int\limits^(1)/(m)_0 {4x-4x(m^(3) x^(3) )\, dx =\int\limits^(1)/(m)_0 ({4x-4m^(3) x^(4)) \, dx](https://img.qammunity.org/2020/formulas/mathematics/college/bzivvwmw0qmgcj6pt93jpj1scuxfhvnkog.png)
Solving now for dx:
![[{(4x^(2))/(2) -(4m^(3) x^(5))/(5) ]{{(1)/(m) } \atop {0}} \right. = [{2x^(2) -(4m^(3) x^(5))/(5) ]{{(1)/(m) } \atop {0}} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/a3q4t2g0p3qjq0jjzkg2wmab7ayg1sdfzl.png)
Replacing the limits:
![(2)/(m^(2) )-(4m^(3)(1)/(m^(5)))/(5) =(2)/(m^(2) )-(4(1)/(m^(2)))/(5) \\ (2)/(m^(2) )-(4)/(5m^(2) )=(10m^(2)-4m^(2) )/(5m^(4)) \\ (6m^(2) )/(5m^(4)) =(6)/(5m^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/d04vnahm4ebfp1yi0wqxedfnjxhvx21zcf.png)
As I mentioned before, this volume is equal to 1, hence:
![(6)/(5m^(2))=1\\m^(2) =(6)/(5) \\m=\sqrt{(6)/(5) }](https://img.qammunity.org/2020/formulas/mathematics/college/e0xn4i6btvb5dgheoz2yk8lh1mdm6gckpf.png)