13.5k views
4 votes
La temperatura a una distancia r del centro de una lámina está dada por T=40 (r2?2r) . La variación instantánea de la temperatura respecto a r está dada por:

User Weigreen
by
5.4k points

1 Answer

3 votes

For this, the first thing to do is to assume that the function of temperature with respect to r is written in one of the following ways:

Way 1:


T = 40 (r ^ 2 + 2r)

Way 2:


T = 40 (r ^ 2-2r)

To find the instant variation we must find the derivative of the temperature with respect to the distance r.

We have then:

For function 1:


\frac {dT} {dr} = 40 \frac {d ((r ^ 2 + 2r))} {dr}\\


\frac {dT} {dr} = 40 (2r + 2)

Rewriting


\frac {dT} {dr} = 80r + 80

For function 2:


\frac {dT} {dr} = 40 \frac {d ((r ^ 2-2r))} {dr}


\frac {dT} {dr} = 40 (2r-2)

Rewriting


\frac {dT} {dr} = 80r-80

Answer:

The instantaneous variation of the temperature with respect to r is given by:

Assuming function 1:


\frac {dT} {dr} = 80r + 80

Assuming Function 2:


\frac {dT} {dr} = 80r-80

User Marwane Ezzaze
by
6.3k points