Answer:
![(\$7823.6,\ \$8176.4)](https://img.qammunity.org/2020/formulas/mathematics/college/wmcmrwcxinqloua0cpd38ce2agibsit7im.png)
Explanation:
Given : Sample size : n= 100, it means its a large sample, we use z-test.
Significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
Critical value :
![z_(\alpha/2)=\pm1.96](https://img.qammunity.org/2020/formulas/mathematics/college/t6aj8udrmv2pwydwg1bffawdhitpxlwm1q.png)
Sample mean:
![\overline{x}=\$8000](https://img.qammunity.org/2020/formulas/mathematics/college/im39bt21xkopsyaw7zt6nhs237cgv357hl.png)
Standard deviation:
![\sigma=\$900](https://img.qammunity.org/2020/formulas/mathematics/college/693rzqme2smfpbdbritly1ru9k5h8ggmsz.png)
The confidence interval for population mean is given by :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))\\\\=8000\pm (1.96)(900)/(√(100))\\\\\approx8000\pm176.4=(8000-176.4,8000+176.4)=(7823.6,\ 8176.4)](https://img.qammunity.org/2020/formulas/mathematics/college/bcorbe0r2az913kux04yr3qnec71y7spye.png)
Hence, the 95% confidence interval for the mean expenditure of all tourists who visit the resort.=
![(\$7823.6,\ \$8176.4)](https://img.qammunity.org/2020/formulas/mathematics/college/wmcmrwcxinqloua0cpd38ce2agibsit7im.png)