Answer:
The standard deviation would stay the same
Step-by-step explanation:
Given:
Salaries as:
$3,500
$4,000
$4,500
and after $100 raise
$3,600
$4,100
$4,600
The average of the salaries before raise
= ( $3,500 + $4,000 + $4,500 ) / 3 = $4,000
The standard deviation =
![\sigma=\sqrt{((mean-x_i)^2)/(n)}](https://img.qammunity.org/2020/formulas/business/college/my18m5nhi3mtxx2hrzq59eadxxquvwp0qk.png)
and
![\sigma=\sqrt{((4,000-3500)^2+(4,000-4000)^2+(4,000-4500)^2)/(3)}](https://img.qammunity.org/2020/formulas/business/college/b1ruxijj3dnh1zn1a54uvsedh86ouq0ysb.png)
or
![\sigma=\sqrt{(250000+0+250000)/(3)}](https://img.qammunity.org/2020/formulas/business/college/5bqccqxdyx778bej8i464o3sh3tz70v8zz.png)
or
![\sigma=408.24](https://img.qammunity.org/2020/formulas/business/college/5gjw3ja82923nntnf4vs7b5ncx55qlxji3.png)
and, after the raise
the average = ( $3,600 + $4,100 + $4,600 ) / 3 = $4,100
now,
the standard deviation ,
![\sigma=\sqrt{((4,100-3600)^2+(4,100-4100)^2+(4,100-4600)^2)/(3)}](https://img.qammunity.org/2020/formulas/business/college/u9gy6z2ecv8ljunvwojs9szpgq3e4whzaz.png)
or
![\sigma=\sqrt{(250000+0+250000)/(3)}](https://img.qammunity.org/2020/formulas/business/college/5bqccqxdyx778bej8i464o3sh3tz70v8zz.png)
or
![\sigma=408.24](https://img.qammunity.org/2020/formulas/business/college/5gjw3ja82923nntnf4vs7b5ncx55qlxji3.png)
therefore, The standard deviation would stay the same