Answer:
(a)
![a_(c) = 5.41* 10^(9) m/s^(2)](https://img.qammunity.org/2020/formulas/physics/college/58hkx6se7hrtvdhsylynve15kh8fwgvow9.png)
(b)
![a_(t) = 2.99* 10^(- 5) m/s^(2)](https://img.qammunity.org/2020/formulas/physics/college/zjayae0skycghpm68tbniftce7ro8p0kti.png)
Given:
Time period of Pulsar,
![T_(P) = 33.085 ms == 33.085* 10^(- 3) s](https://img.qammunity.org/2020/formulas/physics/college/wzlz2eyqsuj117wvcfr5p3g2wey0wrle32.png)
Equatorial radius, R = 15 Km = 15000 m
Spinning time,
![t_(s) = 9.50* 10^(10)](https://img.qammunity.org/2020/formulas/physics/college/nb9n06w2xegjaq0ro0e31sr36nakrknuxu.png)
Solution:
(a) To calculate the value of the centripetal acceleration,
on the surface of the equator, the force acting is given by the centripetal force:
![m* a_(c) = (mv_(c)^(2))/(R)](https://img.qammunity.org/2020/formulas/physics/college/squpezphyv2ghgsfdpouiz0edzdzvnbjqv.png)
(1)
where
![v_(c) = (distance covered(i.e., circumference))/( T)](https://img.qammunity.org/2020/formulas/physics/college/39exoqtokt45tvb80mhjx9luuadzhuy3a3.png)
(2)
Now, from (1) and (2):
![a_(c) = R\frac({2\pi )^(2)}{T^(2)}](https://img.qammunity.org/2020/formulas/physics/college/9z1mohp32ktllnipz437gvx0nfnycmda8j.png)
![a_(c) = 15000(2\pi )^(2))/((33.085* 10^(- 3))^(2))](https://img.qammunity.org/2020/formulas/physics/college/zskudnwcqgi3o69sctmnaovugm1794mjbn.png)
![a_(c) = 5.41* 10^(9) m/s^(2)](https://img.qammunity.org/2020/formulas/physics/college/58hkx6se7hrtvdhsylynve15kh8fwgvow9.png)
(b) To calculate the tangential acceleration of the object :
The tangential acceleration of the object will remain constant and is given by the equation of motion as:
![v = u + a_(t)t_(s) = 0](https://img.qammunity.org/2020/formulas/physics/college/jily40sxqu8de0u4uaadpcsqlv1mpgl7nn.png)
where
u =
![v_(c)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qb5t60qt3pji53kk93hrkuruemdvhdm17q.png)
![a_(t) = - (2\pi R)/(Tt_(s))](https://img.qammunity.org/2020/formulas/physics/college/y2y3f7a1jsiyltzagtxmt8ynaxam1ehgt4.png)
![a_(t) = - (2\pi 15000)/(33.085* 10^(- 3)* 9.50* 10^(10))](https://img.qammunity.org/2020/formulas/physics/college/9xf7ig3x7h7r39qluquh70uhc0tqqnu5lf.png)
![a_(t) = 2.99* 10^(- 5) m/s^(2)](https://img.qammunity.org/2020/formulas/physics/college/zjayae0skycghpm68tbniftce7ro8p0kti.png)