Answer:
Step-by-step explanation:
A particular solution for the 1D wave equation has the form
![\Psi(x,t) \ = \ A \ sin ( \ k x \ + \omega t \ + \phi \ )](https://img.qammunity.org/2020/formulas/physics/college/xdww1q85rxz928tlzs0r499u47gy145br0.png)
where A its the amplitude, k the wavenumber, ω the angular frequency and φ the phase angle.
Now, for any given position
, we can use:
![\phi_0 \ = \ \phi \ + \ k x_0](https://img.qammunity.org/2020/formulas/physics/college/mpl69w6k8jo69vauqp5e6rvdw8ewxs739u.png)
so, the equation its:
.
This is the equation for a simple harmonic oscillation!
So, for any given point, we can use a simple harmonic oscillation as visual model. Now, when we move a
distance from the original position, we got:
![x_1 = x_0 + \delta](https://img.qammunity.org/2020/formulas/physics/college/vdmc7dlg9tfk4jl8x1dtk1j6fk98io78sp.png)
and
![\phi_1 = \phi \ + k x_1](https://img.qammunity.org/2020/formulas/physics/college/zvde5vu6rbvaz1wjhzqlxa4499ho5h4iyh.png)
now, this its
![\phi_1 = \phi \ + k ( x_0 + \delta)](https://img.qammunity.org/2020/formulas/physics/college/dbfmobtt7iu2ie7refgwwv1k5nx1meyjcv.png)
![\phi_1 = \phi \ + k x_0 + k \delta](https://img.qammunity.org/2020/formulas/physics/college/l3tj2xxp6t2rny45q76hechts1lkfuq5cp.png)
![\phi_1 = \phi_0 + k \delta](https://img.qammunity.org/2020/formulas/physics/college/b38iu9yn7cyunp4j8gnmc65cssmo0h3b0a.png)
So, there its a phase angle difference of
. We can model this simply by starting the simple harmonic oscillation with a different phase angle.