Answer:
The electric field magnitude= 2.27kN/C direction=
![230^o](https://img.qammunity.org/2020/formulas/physics/college/97nwzesccjjqdevvcp0s7rxqykkxzmyden.png)
The force is
direction=
![230^o](https://img.qammunity.org/2020/formulas/physics/college/97nwzesccjjqdevvcp0s7rxqykkxzmyden.png)
Step-by-step explanation:
Here we have an array of charged points, we have to calculate the net force in the point x=-2.9m and y=1.2m; so we need have to find the distance of all the charged point from this position.
to obtain the distance we have to do this:
![X'=x2-x1 \\Y'=y2-y1\\d=\sqrt{X'^2+Y'^2](https://img.qammunity.org/2020/formulas/physics/college/eah9d3urz5jhg964y61njcm389worpgj49.png)
fot the charge of 5.5uC
![X'=0.9-(-2.9)=3.8m\\Y'=3.4-1.2=2.2\\d_(5.5) =√((3.8)^2+(2.2)^2) =4.39m](https://img.qammunity.org/2020/formulas/physics/college/k8e860dt2w86524u12vsuz6gyzs92ywinx.png)
θ
![=tg^(-1) ((2.2)/(3.8) )=30^(o)](https://img.qammunity.org/2020/formulas/physics/college/78fv7ruflzg7qijag6whrt89e13zxboyc6.png)
and for the charge of -3.6uC
![X'=2.3-(-2.9)=5.2m\\Y'=-1.9-1.2=-3.1\\d_(3.6) =√((5.2)^2+(-3.1)^2) =6.05m](https://img.qammunity.org/2020/formulas/physics/college/x0ml2wf58yj25bs6xhje1c1q5zzs83os76.png)
θ
![=tg^(-1) ((3.1)/(5.2) )=30.8^(o)](https://img.qammunity.org/2020/formulas/physics/college/2botb737t9pbl18x6omyybiucy5cfft8we.png)
Now that we have the distance and the angle, we can calculate the electric field; ausuming a positive charge:
![E=k*(q)/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/pkruebfuqq2pat9i9lds9zzou434o7mm56.png)
The net force in X direction:
![E_(x) =k*(q)/(r^2)*cos(angle)](https://img.qammunity.org/2020/formulas/physics/college/1yc9tf10jsv4m82e8b1bbs8yieuss7rhah.png)
![E_(x) =9*10^(9) ((3.6*10^(-6))/(6.05^2)cos(30.8) -(5.5*10^(-6))/(4.39^2)cos(30))\\E_(x) =-1.46*10^(3)(N)/(C)](https://img.qammunity.org/2020/formulas/physics/college/pd2ixwugvr6c7f080agxiqvoms2pi6fm1o.png)
the net force in Y direction:
![E_(y) =9*10^(9) (-(3.6*10^(-6))/(6.05^2)sin(30.8)-(5.5*10^(-6))/(4.39^2)sin(30) )\\E_(y) =-1.74*10^(3)(N)/(C)](https://img.qammunity.org/2020/formulas/physics/college/nf8w3lguq1nd4w3u1qhlqthz567j0kgmvh.png)
So the magnitud of the electric field is:
![\sqrt{E_(x) ^2+E_(y) ^2} =2.27kN/C](https://img.qammunity.org/2020/formulas/physics/college/4qnnxdfmks9z0f8mdwvd45twhseqy7eua9.png)
with a direction of:
θ
, because is going down and to the left, we have to add 180, so the direction is=
![230^o](https://img.qammunity.org/2020/formulas/physics/college/97nwzesccjjqdevvcp0s7rxqykkxzmyden.png)
to obtain the force of a proton we only have to multiply the Electric field times the charge of the proton, that is:
![F=E*q\\F=2.27*10^(3)*1.6*10^(-19)\\F=3.63*10^(-16) C](https://img.qammunity.org/2020/formulas/physics/college/8aba1l1zjw8kdtccsn7q2znxdl880jevws.png)
As we calculated the electric field assuming that the charge was a positive, the direction of the force will be the same.
![230^o](https://img.qammunity.org/2020/formulas/physics/college/97nwzesccjjqdevvcp0s7rxqykkxzmyden.png)