146k views
5 votes
Find the de Broglie wavelength of electrons in hydrogen’s n= 1 state,n= 4 state, andn= 10 state

User PSK
by
4.7k points

2 Answers

7 votes

Answer:

The de Broglie wavelength for n = 1


\lambda=0.33\ nm

The de Broglie wavelength for n = 4


\lambda=1.33\ nm

The de Broglie wavelength for n = 10


\lambda=3.33\ nm

Step-by-step explanation:

Given that,

State of hydrogen’s atom are

n = 1,4 and 10

We need to calculate the energy for
n^(th) state

Using formula of energy


E=(-13.6\ eV)/(n^2)}

For , n = 1


E=(-13.6*1.6*10^(-19))/(1^2)}


E_(1)=-2.176*10^(-18)\ J

For, n = 4


E=(-13.6*1.6*10^(-19))/(4^2)}


E_(4)=-1.36*10^(-19)\ J

For, n = 10


E=(-13.6*1.6*10^(-19))/(10^2)}


E_(10)=-2.176*10^(-20)\ J

We need to calculate the de Broglie wavelength of electrons in hydrogen’s atom

Using formula of wavelength


\lambda=(h)/(√(2mE))

For,n =1


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*9.1*10^(-31)*(2.176*10^(-18))}}


\lambda=3.33*10^(-10)\ m


\lambda=0.33\ nm

For, n=4


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*9.1*10^(-31)*(1.36*10^(-19))}}


\lambda=1.33*10^(-9)\ m


\lambda=1.33\ nm

For, n=10


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*9.1*10^(-31)*(2.176*10^(-20))}}


\lambda=3.33*10^(-9)\ m


\lambda=3.33\ nm

Hence, The de Broglie wavelength for n = 1


\lambda=0.33\ nm

The de Broglie wavelength for n = 4


\lambda=1.33\ nm

The de Broglie wavelength for n = 10


\lambda=3.33\ nm

User Scott Fister
by
5.9k points
2 votes

Answer:

Wavelength is 0.33 nm for n=1, 1.32 nm for n=4, and 3.3 nm for n=10.

Step-by-step explanation:

The velocity of the electron in the nth level of hydrogen atom is,


v_(n)=(2.2* 10^(6) m/s )/(n)

Now the de Broglie wavelength can be calculated as,


\lambda=(h)/(mv)

For n=1 the wavelength is,


\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg(2.2* 10^(6) m/s) )\\\lambda=0.33* 10^(-9)m\\ \lambda=0.33nm

Therefore wavelength for n=1 orbit is 0.33 nm.

For n=4 the wavelength is,


\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg((2.2* 10^(6) m/s)/(4) ) )\\\lambda=1.32* 10^(-9)m\\ \lambda=1.32nm

Therefore wavelength for n=4 orbit is 1.32 nm.

For n=4 the wavelength is,


\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg((2.2* 10^(6) m/s)/(4) ) )\\\lambda=3.3* 10^(-9)m\\ \lambda=3.3nm

Therefore wavelength for n=10 orbit is 3.3 nm.

User Shawneen
by
5.7k points