Answer:
Wavelength is 0.33 nm for n=1, 1.32 nm for n=4, and 3.3 nm for n=10.
Step-by-step explanation:
The velocity of the electron in the nth level of hydrogen atom is,
![v_(n)=(2.2* 10^(6) m/s )/(n)](https://img.qammunity.org/2020/formulas/physics/college/naipq4f4gbjp5mwp82lgq06d7no42r4u8m.png)
Now the de Broglie wavelength can be calculated as,
![\lambda=(h)/(mv)](https://img.qammunity.org/2020/formulas/physics/high-school/2ux9ol38f2uin1tqqqpm91aapsytpn91ak.png)
For n=1 the wavelength is,
![\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg(2.2* 10^(6) m/s) )\\\lambda=0.33* 10^(-9)m\\ \lambda=0.33nm](https://img.qammunity.org/2020/formulas/physics/college/cmn47chgnbiio7nrcqsj6oit9jgpi7je6u.png)
Therefore wavelength for n=1 orbit is 0.33 nm.
For n=4 the wavelength is,
![\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg((2.2* 10^(6) m/s)/(4) ) )\\\lambda=1.32* 10^(-9)m\\ \lambda=1.32nm](https://img.qammunity.org/2020/formulas/physics/college/cambno3a16vqjp3df04hwojxv5ievvb7ox.png)
Therefore wavelength for n=4 orbit is 1.32 nm.
For n=4 the wavelength is,
![\lambda=(6.626* 10^(-34)Js )/(9.1* 10^(-31)kg((2.2* 10^(6) m/s)/(4) ) )\\\lambda=3.3* 10^(-9)m\\ \lambda=3.3nm](https://img.qammunity.org/2020/formulas/physics/college/o1bixwflingix1ni0zaw0f00xnc5nbb49h.png)
Therefore wavelength for n=10 orbit is 3.3 nm.