Answer:
![5.31* 10^(-19)](https://img.qammunity.org/2020/formulas/physics/college/g6qlr3kreppd5jg3xeax8j4n02hikkmkny.png)
Step-by-step explanation:
Entropy of the system,
![(S) = - k_(B) lnW](https://img.qammunity.org/2020/formulas/physics/college/ddrktee7ebeo6ybche0pl9a3xm2u8gdxas.png)
is Boltzmann constant, W is the number of microstates
is the probability of a molecule in a given energy level.
![p_(i) =(N_(i) )/(N)](https://img.qammunity.org/2020/formulas/physics/college/o0gciwbz9f0kc59fdrdtifhrks08u0e9rl.png)
= number of molecules in a energy state, N = total number of molecules
And,
![ln W = - N \sum p_(i) lnp_(i)](https://img.qammunity.org/2020/formulas/physics/college/dy9mkphaas6wsvl4s54qntikjia2yd6kug.png)
In the given problem
![N = 100000+10000+1000 = 111000](https://img.qammunity.org/2020/formulas/physics/college/qpfkunjhl2zhqa6e7c7p176bz01a1ho8cl.png)
![p_(1) = 100000/111000 = 0.9009](https://img.qammunity.org/2020/formulas/physics/college/yf6bn31zmkh93fgj71bols2qpcjnl948b5.png)
![p_(2) = 10000/111000 = 0.09009](https://img.qammunity.org/2020/formulas/physics/college/o0exhu2bvlryglo9md1two46esyhjlx7zi.png)
![p_(3) = 1000/111000 = 0.009009](https://img.qammunity.org/2020/formulas/physics/college/nz7fi5ol6n0zzhagkpt51ey3mrp7jtt3gf.png)
then,
![S = - N k_(B) [p_(1) lnp_(1) + p_(2)lnp_(2) + p_(2)lnp_(2)]](https://img.qammunity.org/2020/formulas/physics/college/2fzidwmzbgshv0i65s7w003s2l8s2ytw98.png)
Therefore,
![S = - Nk_(B) [ 0.9009ln0.9009 + 0.09009ln0.09009 + 0.009009ln0.009]\\S== -111000* 1.38*10^(-23)[ - 0.9009* 0.1 - 0.09009* 2.41 - 0.009009* 4.71]\\S= 111* 1.38* 10^(-20) [ 0.09009 + 0.217+0.04243]\\S= 151.8* 10^(-20)* 0.34952\\S=53.06* 10^(-20) JK^(-1) \\S=5.31* 10^(-19) JK^(-1)](https://img.qammunity.org/2020/formulas/physics/college/c66r8dk25l8287194n4jb7gpelv9uekxbt.png)
Therefore entropy of the system is
![5.31* 10^(-19)](https://img.qammunity.org/2020/formulas/physics/college/g6qlr3kreppd5jg3xeax8j4n02hikkmkny.png)