Answer:
M = 1073 Mev/c2
u = 0.95 C
Step-by-step explanation:
given data:
m1 =135 Mev/c2
v1 = 0.53 c
m2 = 938 Mev/c2
v2 = 0.98 c
from conservation of momentum principle we have
![\frac{mu}{\sqrt{1-(u^2)/(C^2)}} = \frac{m1v1}{\sqrt{1-(V1^2)/(C^2)}} +\frac{m1v1}{\sqrt{1-(V2^2)/(C^2)}}](https://img.qammunity.org/2020/formulas/physics/college/liwsp2vwafkouyun3h9sgdn4xwk5xwxbf2.png)
![\frac{mu}{\sqrt{1-(u^2)/(C^2)}} = (135*0.53c)/(0.848) +(938*0.98c)/(0.2)](https://img.qammunity.org/2020/formulas/physics/college/mqsy607ex7gumvd9z0d9doxkynghy9twyo.png)
...............1
Total mass of INITIAL particle M =m1+m2 = 1073 Mev/c2
using equation 1
![\frac{1073 u}{\sqrt{1-(u^2)/(C^2)}}= 4680.6C](https://img.qammunity.org/2020/formulas/physics/college/dw1tc9n6k5t1k47q3xaol4ric38r0z9x2d.png)
solving for u we get
u = 0.95 C