Answer:
Θ
Θ
Θ =
![tan^(-1)((v^(](https://img.qammunity.org/2020/formulas/physics/college/9q5e3fhsxu86cg4o2twb9sr9fa969949cm.png)
Step-by-step explanation:
Applying the law of conservation of momentum, we have:
Δ
![p_(x = 0)](https://img.qammunity.org/2020/formulas/physics/college/vwur8sb831q8j7i94nuzznrh8nsewvz1et.png)
![p_(x) = p](https://img.qammunity.org/2020/formulas/physics/college/tw8haed0n5lznzfedtr44viybds6erejec.png)
Θ (Equation 1)
Δ
![p_(y) = 0](https://img.qammunity.org/2020/formulas/physics/college/bbh1iluj31zf4qc28kbxitn5za6vye2vn4.png)
![p_(y) = p](https://img.qammunity.org/2020/formulas/physics/college/do45mttd6c16gvfnfeppgo0bw62bm63uw4.png)
Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ =
![m_(1) v_(1)](https://img.qammunity.org/2020/formulas/physics/college/99behk0wq8id8nq8kh00mi859fffykokvc.png)
![v](https://img.qammunity.org/2020/formulas/physics/college/nhhyse6ldxna0af5vkjdi0z3bxehc7526b.png)
Replacing Equation 3 in Equation 4:
![v](https://img.qammunity.org/2020/formulas/physics/college/xrh4ffwk45n7a313haxm4cq1806gugtwj3.png)
![v](https://img.qammunity.org/2020/formulas/physics/college/fvk6uqrqiq1jytzrji9j0p8qjdeblt7c8v.png)
Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
![(v](https://img.qammunity.org/2020/formulas/physics/college/ln24szzkmd30wtf286o5gm63osi04x0hsw.png)
Θ=
![tan^(-1)((v](https://img.qammunity.org/2020/formulas/physics/college/sa51kd9j2zzrw0vtksjhmaa6egq96z2l25.png)