Answer: 3a = (0, 1) 3b = (2, 1) 3c = (2.5, 1) 3d = (1.6, 1)
4a = (2, 3.5) 4b = (2, 3) 4c = (2, 5.375)
Explanation:
The length of AB is 6 and is horizontal (affects the x-coordinate)
![3a)\quad 6\bigg((1)/(2)\bigg)\quad =3\qquad \qquad A(-2, 1) +(3, 0)= C(1,1)\\\\\\3b)\quad 6\bigg((2)/(3)\bigg)\quad =4\qquad \qquad A(-2, 1) +(4,0)= C(2,1)\\\\\\3c)\quad 6\bigg((3)/(4)\bigg)\quad =(9)/(2)\qquad \qquad A(-2, 1) +(4.5,0)= C(2.5,1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qabcozv0q6b4dzeoj7r8bw94w9u9mk9fgy.png)
![3d)\quad 6\bigg((3)/(5)\bigg)\quad =(18)/(5)\qquad \qquad A(-2, 1) +(3.6,0)= C(1.6,1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ysq6sd5or4cc1xs1npgqkkezk3x6bx8k9a.png)
***********************************************************************************
The length of AB is 5 and is vertical (affects the y-coordinate)
![4a)\quad 5\bigg((1)/(2)\bigg)\quad =(5)/(2)\qquad \qquad A(2, 1) +(0,2.5)= C(2,3.5)\\\\\\4b)\quad 5\bigg((2)/(5)\bigg)\quad =2\qquad \qquad A(2, 1) +(0,2)= C(2,3)\\\\\\4c)\quad 5\bigg((7)/(8)\bigg)\quad =(35)/(8)\qquad \qquad A(2, 1) +(0,4.375)= C(2,5.375)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z7y6h48zlj9kex28ew2efuz0w8gcs2krzo.png)