399,456 views
25 votes
25 votes
Cosine Rule In ABC, BC = 4cm, M is the mid-point of BC, AM = 4cm and AMB = 120..... Check the image below

Cosine Rule In ABC, BC = 4cm, M is the mid-point of BC, AM = 4cm and AMB = 120..... Check-example-1
User Raajpoot
by
2.7k points

1 Answer

17 votes
17 votes

Answer:


\sf (a) \quad AC=2√(3)\:\:cm


\sf (b) \quad AB=2√(7)\:\:cm


\sf (c) \quad \angle ACB=90^(\circ)

Explanation:

Cosine rule


\sf c^2=a^2+b^2-2ab \cos C

where:

  • a, b and c are the sides of the triangle.
  • C is the angle opposite side c.

Sketch the triangle using the given information (see attached).

Part (a)

Given:

  • a = MC = 2
  • b = AM = 4
  • c = AC
  • C = ∠AMC = 60°

Substitute the given values into the formula and solve for AC:


\implies \sf c^2=a^2+b^2-2ab \cos C


\implies \sf AC^2=2^2+4^2-2(2)(4) \cos 60^(\circ)


\implies \sf AC^2=4+16-16 \left((1)/(2)\right)


\implies \sf AC^2=20-8


\implies \sf AC^2=12


\implies \sf AC=√(12)


\implies \sf AC=√(4 \cdot 3)


\implies \sf AC=√(4)√(3)


\implies \sf AC=2√(3)\:\:cm

Part (b)

Given:

  • a = BM = 2
  • b = AM = 4
  • c = AB
  • C = ∠AMB = 120°

Substitute the given values into the formula and solve for AB:


\implies \sf c^2=a^2+b^2-2ab \cos C


\implies \sf AB^2=2^2+4^2-2(2)(4) \cos 120^(\circ)


\implies \sf AB^2=4+16-16 \left(-(1)/(2)\right)


\implies \sf AB^2=20+8


\implies \sf AB^2=28


\implies \sf AB=√(28)


\implies \sf AB=√(4\cdot7)


\implies \sf AB=√(4)√(7)


\implies \sf AB=2√(7)\:\:cm

Part (c)

Given:

  • a = AC = 2√3
  • b = BC = 4
  • c = AB = 2√7
  • C = ∠ACB

Substitute the given values into the formula and solve for ∠ACB:


\implies \sf c^2=a^2+b^2-2ab \cos C


\implies \sf \left(2√(7)\right)^2=\left(2√(3)\right)^2+4^2-2\left(2√(3)\right)(4) \cos ACB


\implies \sf 28=12+16-16√(3) \cos ACB


\implies \sf 28=28-16√(3) \cos ACB


\implies \sf 0=-16√(3) \cos ACB


\implies \sf \cos ACB=0


\implies \sf ACB=\cos^(-1)(0)


\implies \sf ACB=90^(\circ)

Cosine Rule In ABC, BC = 4cm, M is the mid-point of BC, AM = 4cm and AMB = 120..... Check-example-1
User Lenz
by
2.7k points