Answer:
a) 120 m
b) 690 m
Step-by-step explanation:
Given:
x₀ = 0 m
y₀ = 0 m
v₀ = 85 m/s
θ = 35°
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
a) At the maximum height, the vertical velocity vᵧ = 0 m/s. Find y.
vᵧ² = v₀ᵧ² + 2aᵧ (y − y₀)
(0 m/s)² = (85 sin 35° m/s)² + 2 (-9.8 m/s²) (y − 0 m)
y ≈ 120 m
b) At the maximum range, the cannonball lands, so y = 0.
First, we need to find the time it takes to land.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (0 m) + (85 sin 35° m/s) t + ½ (-9.8 m/s²) t²
t = 0 s, 9.95 s
Now find the final horizontal position x:
x = x₀ + v₀ₓ t + ½ aₓ t²
x = (0 m) + (85 cos 35° m/s) (9.95 s) + ½ (0 m/s²) (9.95 s)²
x ≈ 690 m