82.3k views
0 votes
30 points! i need to turn this in tomorrow

30 points! i need to turn this in tomorrow-example-1
30 points! i need to turn this in tomorrow-example-1
30 points! i need to turn this in tomorrow-example-2

2 Answers

5 votes

Answer:

Explanation:

Reduce the radicals:


1.\ √(72)=√(3*5*5)=√(3*5^2)\\\\\boxed{√(75)=5√(3) }


2.\ √(80)=√(2*2*2*2*5)=√(2^4*5)=2^2√(5)\\\\\boxed{√(80)=4√(5) }


3.\ √(108)=√(2*2*3*3*3)=√(2^2*3^2*3)=2*3√(3)\\\\\boxed{√(108)=6√(3)}


4.\ √(72)=√(2*2*2*3*3)=√(2^2*2*3^2)=2*3√(2)\\\\\boxed{√(72)=6√(72) }[

Find the distance between the two points:


5.\ (5, 9), (-7, -7)\\\\D=√((-7-5)^2+(-7-9)^2)=√((-12)^2+(-16)^2)=√(144+256)=√(400)=√(20^2)\\\\\boxed{D=20}


6.\ (0, -2), (-5, -1)\\\\D=√((-5-0)^2+(-1-(-2))^2)=√((-5)^2+(1)^2)=√(25+1)\\\\\boxed{D=√(26)}


7.\ D=10, A(4,w)\ and\ B(-2,-1)\\\\D=√((-2-4)^2+(-1-w)^2)\\\\10^2=[√((-6)^2+(-1-w)^2)]^2\\\\100=36+(-1-w)^2\\\\64=(-1-w)^2\\\\√(64) =√((-1-w)^2)\\\\\pm8=-1-w\\\\\pm8+1=-w\\\\w=\pm8-1\\\\\boxed{w_1=7\ and\ w_2=-9}


8.\ D=20, A(5,9)\ and\ B(-7,w);\ w<0\\\\D=√((-7-5)^2+(w-9)^2)\\\\20^2=[√((-12)^2+(w-9)^2)]^2\\\\400=144+(w-9)^2\\\\256=(w-9)^2\\\\√(256) =√((w-9)^2)\\\\\pm16=w-9\\\\\pm16+9=w\\\\\boxed{w=-7}

User Matpie
by
7.7k points
3 votes

Answer:

9.
√((4a)+(9b)) 10.
√((9a)+(9b)) 11
√(13)

Explanation:

9. Since the Distance Formula is
D=\sqrt{(x-x_(0))^(2)+(y-y_(0))^2}

C(a, -b) D(3a, -4b)

Let us plug it in values

D=
\sqrt{(3a-a)^(2)+(-4b+b)^(2)}\\\\\sqrt{(2a)^(2)+(-3b)^(2)} &nbsp;\\ √((4a)+(9b))

10. C(-a,-2b) D(2a, b)

D=
\sqrt{(2a+a)^(2)+(b+2b)^(2)}\\\\\sqrt{(3a)^(2)+(3b)^(2)} &nbsp;\\ √((9a)+(9b))

11.

a)AB A(2,3) B(5,5)

D=
\sqrt{(5-2)^(2)+(5-3)^(2)}\\\\\sqrt{(3)^(2)+(2)^(2)} &nbsp;\\ √(13)

CD C(4,3) D(1,1)

D=
\sqrt{(1-4)^(2)+(1-3)^(2)}\\\\\sqrt{(-3)^(2)+(-2)^(2)} &nbsp;\\ √(13)

BC B(5,5) C(4,3)

D=
\sqrt{(4-5)^(2)+(3-5)^(2)}\\\\\sqrt{(-1)^(2)+(-2)^(2)} &nbsp;\\ √(5)

DA D(1,1) A(2,3)

D=
\sqrt{(2-1)^(2)+(3-1)^(2)}\\\\\sqrt{(1)^(2)+(2)^(2)} &nbsp;\\ √(5)

e. The length of each diagonal

AC A(2,3) C(4,3)

D=
\sqrt{(4-2)^(2)+(3-3)^(2)}\\\\\sqrt{(2)^(2)+(0)^(2)} &nbsp;\\ √(4)

length = 2 u

f.BD B(5,5) D(1,1)

D=
\sqrt{(1-5)^(2)+(1-5)^(2)}\\\\\sqrt{(-4)^(2)+(-4)^(2)} &nbsp;\\ √(32) = 4
4√(2)

g. No, since congruent diagonals have the same size. Those diagonals do not have congruence between them.

12.

AB A(-2,-1) B(4,1)

D=
\sqrt{(4+2)^(2)+(1+1)^(2)}\\\\\sqrt{(6)^(2)+(2)^(2)} &nbsp;\\ √(40) =
2√(10)

AC A(-2,-1) C(2,-5)

D=
\sqrt{(2+2)^(2)+(-5+1)^(2)}\\\\\sqrt{(4)^(2)+(-4)^(2)} &nbsp;\\ √(32) =
4√(2)

BC B(4,1) C(2,-5)

D=
\sqrt{(2-4)^(2)+(-5-1)^(2)}\\\\\sqrt{(-2)^(2)+(-6)^(2)} &nbsp;\\ √(40) =
2√(10)

d) AB≅BC

30 points! i need to turn this in tomorrow-example-1
30 points! i need to turn this in tomorrow-example-2
30 points! i need to turn this in tomorrow-example-3
User Jan Oelker
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories