Answer:
Time taken to hit the floor, t = 0.61 s
Option a.
Given:
t = 0.50 s
Solution:
Initial velocity of the ball when dropped, u = 0 m/s
Now, using second equation of motion when acceleration due to gravity acts:
![h = ut + (1)/(2)gt^(2)](https://img.qammunity.org/2020/formulas/physics/college/cft8c1wz4elq6hh4ytazn2komgaxsrtuoo.png)
h = 1.225 m
Now, when the lift moves in the upward direction with a constant speed of 1.0 m/s, u = - 1.0 m/s
Time taken by the ball to hit the floor travelling a distance h = 1.225 m is given by:
![h = ut + (1)/(2)gt^(2)](https://img.qammunity.org/2020/formulas/physics/college/cft8c1wz4elq6hh4ytazn2komgaxsrtuoo.png)
Now,
![1.225 = - 1.0t + (1)/(2)* 9.8* t^(2)](https://img.qammunity.org/2020/formulas/physics/college/oom3yuizmo25b8orhfze5mjo9g3vkbkckh.png)
![4.9t^(2) -t -1.225 = 0](https://img.qammunity.org/2020/formulas/physics/college/itu8mkugjjsmnlvgriuzcjqdpivxyzte9g.png)
Solving the above quadratic equation, we get:
t = 0.612 s = 0.61 s