162k views
4 votes
Use a linear system to write u = (12, 19, 31) as a linear combination of U1 = (1,1,2), u2 = (2,3,5), and uz = (3,5,8). Is w = (1,0,1) a linear com- bination of u1, U2, U3?

1 Answer

6 votes

Answer:

Let
t\in {\mathbb R},


\vec{u} = (t-2)\vec{u}_1 + (-2t +7)\vec{u}_2 + t\cdot \vec{u}_3.


\vec{w} is also a linear combination of
\vec{u}_1,
\vec{u}_2,
\vec{u}_3.

Explanation:

1.

Write a linear system for
\vec{u} = x_1\cdot\vec{u}_1 + x_2\cdot \vec{u}_2 + x_3\cdot \vec{u}_3, with one equation for each component. The augmented matrix for the first linear system will be:


\displaystyle \left[\begin{array}c1 & 2 & 3 & 12\\1 & 3 & 5 & 19\\2 & 5 & 8 & 31\end{array}\right].

Transform this matrix to its reduced row-echelon form using Gaussian Elimination. Solve for each variable.


\begin{aligned} &\left[\begin{array}c1 & 2 & 3 & 12\\1 & 3 & 5 & 19\\2 & 5 & 8 & 31\end{array}\right]\\ &\sim \left[\begin{array}c1 & 2 & 3 & 12\\0 & 1 & 2 & 7\\0 & 1 & 2 & 7\end{array}\right]\\&\sim \left[\begin{array}ccc1 & 2 & 3 & 12\\0 & 1 & 2 & 7\\0 & 0 & 0 & 0\end{array}\right]\\&\sim\left[\begin{array}ccc1 & 0 & -1 & -2\\0 & 1 & 2 & 7\\0 & 0 & 0 & 0\end{array}\right]\\&\left\{\begin{array}{l}x_1 = t-2\\x_2=- 2t+7\\x_3=t\end{array}\right.\end{aligned}.

Therefore,


\vec{u} = (t-2)\vec{u}_1 + (-2t +7)\vec{u}_2 + t\cdot \vec{u}_3.

2.

Set up a similar augmented matrix for
\vec{w} = x_1\cdot\vec{u}_1 + x_2\cdot \vec{u}_2 + x_3\cdot \vec{u}_3:


\left[\begin{array}c1 & 2 & 3 & 1\\1 & 3 & 5 & 0\\2 & 5 & 8 & 1\end{array}\right].

The second part of this question isn't concerned about the exact value of
x_1,
x_2, or
x_3. Therefore, before proceeding with Gaussian Elimination, start by checking the determinant of the coefficient matrix. If this determinant is nonzero,
\vec{w} will always be a unique linear combination of
\vec{u}_1,
\vec{u}_2,
\vec{u}_3 now matter what value it takes.

In this case (also as seen in the first part of this question), the determinant of the coefficient matrix for
\vec{u}_1,
\vec{u}_2, and
\vec{u}_3 is zero. Determining whether the linear combination is possible will require elimination.


\begin{aligned} &\left[\begin{array}c1 & 2 & 3 & 1\\1 & 3 & 5 & 0\\2 & 5 & 8 & 1\end{array}\right]\\ &\sim \left[\begin{array}c1 & 2 & 3 & 1\\0 & 1 & 2 & -1\\0 & 1 & 2 & -1\end{array}\right]\\&\sim \left[\begin{array}ccc1 & 2 & 3 & 1\\0 & 1 & 2 & -1\\0 & 0 & 0 & 0\end{array}\right]\\&\sim\left[\begin{array}ccc1 & 0 & -1 & 3\\0 & 1 & 2 & -1\\0 & 0 & 0 & 0\end{array}\right]\\&\left\{\begin{array}{l}x_1 = t+3\\x_2=- 2t-1\\x_3=t\end{array}\right.\end{aligned}.

Similar to the first part of this question, this linear system is consistent.
\vec{w} = (t+3)\vec{u}_1 + (-2t -1)\vec{u}_2 + t\cdot \vec{u}_3.
\vec{w} is indeed a linear combination of
\vec{u}_1,
\vec{u}_2,
\vec{u}_3.

User Jakehurst
by
8.5k points