Answer:
24445.85 J/s
Step-by-step explanation:
Area, A = 300 m^2
T = 33° C = 33 + 273 = 306 k
To = 18° C = 18 + 273 = 291 k
emissivity, e = 0.9
Use the Stefan's Boltzman law
![E = \sigma * e * A*\left ( T^4 -T_(0)^(4)\right )](https://img.qammunity.org/2020/formulas/physics/college/msrjv6hkhk8v03gfgs1zwzh2wu249o4eil.png)
Where, e be the energy radiated per unit time, σ be the Stefan's constant, e be the emissivity, T be the temperature of the body and To be the absolute temperature of surroundings.
The value of Stefan's constant, σ = 5.67 x 10^-8 W/m^2k^4
By substituting the values
![E = 5.64 * 10^(-8)* 0.9 * 300 * (306^(4)-291^(4))](https://img.qammunity.org/2020/formulas/physics/college/5rzi60eenokygcm1nm0ekrdbirt0dnksdg.png)
E = 24445.85 J/s