82.2k views
4 votes
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1800 K. (kb is Boltzmann's constant, 1.38x10^-23 J/K). (1) Wavelength of the electron = ____ m (2) Wavelength of the proton = ______ m

1 Answer

3 votes

Answer:

Given:

Thermal Kinetic Energy of an electron,
KE_(t) = (3)/(2)k_(b)T


k_(b) = 1.38* 10^(- 23) J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron,
\lambda_(e):


\lambda_(e) = (h)/(p_(e))


\lambda_(e) = \frac{h}{m_(e){v_(e)} (1)

where

h = Planck's constant =
6.626* 10^(- 34)m^(2)kg/s


p_(e) = momentum of an electron


v_(e) = velocity of an electron


m_(e) = 9.1* 10_(- 31) kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy


(1)/(2)m_(e)v_(e)^(2) = (3)/(2)k_(b)T


}v_(e) = \sqrt{2((3)/(2)k_(b)T)/(m_(e))}


}v_(e) = \sqrt{(3* 1.38* 10^(- 23)* 1800)/(9.1* 10_(- 31))}


v_(e) = 2.86* 10^(5) m/s (2)

Using eqn (2) in (1):


\lambda_(e) = (6.626* 10^(- 34))/(9.1* 10_(- 31)* 2.86* 10^(5)) = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton,
\lambda_(e):


\lambda_(p) = (h)/(p_(p))


\lambda_(p) = \frac{h}{m_(p){v_(p)} (3)

where


m_(p) = 1.6726* 10_(- 27) kg = mass of proton


v_(p) = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy


(1)/(2)m_(p)v_(p)^(2) = (3)/(2)k_(b)T


}v_(p) = \sqrt{2((3)/(2)k_(b)T)/(m_(p))}


}v_(p) = \sqrt{(3* 1.38* 10^(- 23)* 1800)/(1.6726* 10_(- 27))}


v_(p) = 6.674* 10^(3) m/s (4)

Using eqn (4) in (3):


\lambda_(p) = (6.626* 10^(- 34))/(1.6726* 10_(- 27)* 6.674* 10^(3)) = 5.94* 10^(- 11) m = 0.0594 nm

User Andrew Slaughter
by
7.6k points