Answer:
(A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Step-by-step explanation:
Given that,
Fringe width d = 0.5 mm
Wavelength = 589 nm
Distance of screen and slit D = 1.5 m
Distance of bright fringe y = 1 cm
(A) We need to calculate the order of the bright fringe
Using formula of wavelength
![\lambda=(dy)/(mD)](https://img.qammunity.org/2020/formulas/physics/college/5nzwjs5zw9q124tub9tm3wdok9hboh05km.png)
![m=(d y)/(\lambda D)](https://img.qammunity.org/2020/formulas/physics/college/9kae13nt0z9wws93ns6na6yzkgff312e82.png)
Put the value into the formula
![m=(1*10^(-2)*0.5*10^(-3))/(589*10^(-9)*1.5)](https://img.qammunity.org/2020/formulas/physics/college/yvjez1exb9e2mgak5heshyi5syv4ekkann.png)
![m=5.65 = 6](https://img.qammunity.org/2020/formulas/physics/college/yoezj004z74w7k5o3t9x94jl48k2176ea7.png)
(B). We need to calculate the width of the bright fringe
Using formula of width of fringe
![\beta=(yd)/(D)](https://img.qammunity.org/2020/formulas/physics/college/1okpb3hrcaq07oc1ul1gwhi7i8796t7ol1.png)
Put the value in to the formula
![\beta=(1*10^(-2)*0.5*10^(-3))/(1.5)](https://img.qammunity.org/2020/formulas/physics/college/q5zdwd8ybs533nlkpjbgxudtos5vzfcqvr.png)
![\beta=3.33*10^(-6)\ m](https://img.qammunity.org/2020/formulas/physics/college/8wjlhk06njni0ahwlxi20y1xhkt07k6406.png)
![\beta=3.33\ \mu m](https://img.qammunity.org/2020/formulas/physics/college/s277t301bw054ew1jod8qib3ggi1aun0cd.png)
Hence, (A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.