Answer:
Resistance,
![R = 478.9 k\ohm](https://img.qammunity.org/2020/formulas/physics/college/jnc4uqnjrs1qhs5i4kbdsovkh5npwhfzkk.png)
![C = 12.95\micro F](https://img.qammunity.org/2020/formulas/physics/college/4in0nx92wj55rgykdszcfk0pg353qqa4yt.png)
Given:
V = 407.1 V
Current through the resistor, I = 0.850 mA =
![0.850* 10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/23elfm4cs4z4wly0967wonxbbk711hkggx.png)
Time constant for the circuit,
Solution:
Initially the capacitor is uncharged, the current in the circuit remains same.
Thus
At t = 0
the current in the circuit, I =
![(V)/(R)](https://img.qammunity.org/2020/formulas/physics/middle-school/kq0sy46v76dfdpiztypjpq99eyy5oxhfke.png)
Therefore,
Resistance, R =
![(V)/(I)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5jyrakgxnl95sbkfoea74yqu8n9cbqzd.png)
R =
![(407.1)/(0.850* 10^(-3)) = 478.9 k\ohm](https://img.qammunity.org/2020/formulas/physics/college/birkqqz4prbk94w74xw6io1jqqhec7as0f.png)
Now, for calculation of Capacitance, C:
Time constant for the circuit,
![\tau = CR](https://img.qammunity.org/2020/formulas/physics/college/c1o6p7e0lt6ixw0sqzj7a833e3f6nbogyp.png)
![6.20 = C* 478.9* 10^(3)](https://img.qammunity.org/2020/formulas/physics/college/xvf6gjghctoxrn96xn7h3636r7lfnqzgvc.png)
![C = 1.295* 10^(- 5) F = 12.95\micro F](https://img.qammunity.org/2020/formulas/physics/college/uaoeanttb210ri7i72m7qm0qy5c8anlhx7.png)