Answer:
The outside surface temperature=21.66 C.
Step-by-step explanation:
Given that
Outer diameter=6 cm
Inner diameter=2 cm
![Heat\ flux\ at\ inner\ surface\q=150(W)/(m^2)](https://img.qammunity.org/2020/formulas/engineering/college/1wo2ursnhdy95x2pkarjlb5atvl02gjo6p.png)
Outside temperature=20 C
![Outside\ heat\ transfer\ coefficient=10(W)/(m^2-K)](https://img.qammunity.org/2020/formulas/engineering/college/r995c1lkucky6ljnxfgbhqo26f8grtct6x.png)
To find the outside temperature
Heat out from sphere=Heat absorb by surrounding
![q* A_i=hA_o\Delta T](https://img.qammunity.org/2020/formulas/engineering/college/h3qokumwb3rbjkzsnq91sk14j92hswlxr5.png)
![q* d_i^2=hd_o^2(T_o-20)](https://img.qammunity.org/2020/formulas/engineering/college/2o08k76suoxqmtgi7yw64oldu1h460s1d8.png)
Now by putting the values
![150* 2_i^2=10* 6_o^2(T_o-20)](https://img.qammunity.org/2020/formulas/engineering/college/ukq0xcw2z0q1np6j7g3f487cfz6d2ppizu.png)
![So\ T_o=21.66C](https://img.qammunity.org/2020/formulas/engineering/college/w5mnycsoi6qlxt73eguslxem41jc8xmupg.png)
So the outside surface temperature=21.66 C.