Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f =

f =

Now,
m = -

- 2 = -

= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u =

2 =

2(u - 0.20) = 0.20
u = 0.30 m