58.3k views
5 votes
Solve the initial-value problem

y cos x y' = (cosx)3 sinx, y(0) = −1.

Note: The cosx is raised to a power of 3: (cosx)^3

User Yaplex
by
7.6k points

1 Answer

3 votes

Answer:


{y^2}=-(cosx)/(2)-(cosx)/(6)-(1)/(3)

Explanation:

Given that


y\ cosx\ {y}'=cos^3x\ sinx

y(0)= -1


y\ cosx\ {y}'=cos^3x

The above equation is a differential equation

So now by separating variables


y\ {y}'=cos^2x\ sinx

We know that


cos^2x=1-sin^2x

So


y\ {y}'=(1-1-sin^2x) sinx


y\ {y}'=sinx-sin^3x


ydy=\left (sinx-sin^3x \right )dx


sin^3x=(3sinx-sin3x)/(4)

Now by taking integration both side


\int ydy=\int \left (sinx-sin^3x \right )dx


\int ydy=\int \left (sinx-(3sinx-sin3x)/(4) \right )dx


(y^2)/(2)=-(cosx)/(4)-(cosx)/(12)+C

Now by using y(0)= -1


C=-(1)/(6)


(y^2)/(2)=-(cosx)/(4)-(cosx)/(12)-(1)/(6)


{y^2}=-(cosx)/(2)-(cosx)/(6)-(1)/(3)

User Mkkrolik
by
7.5k points