196k views
5 votes
State whether the following coordinates on a Cartesian plane form an acute, obtuse or right triangle: a) (-1, 1), (7,-2) and (1,-5) --_______ b) (0,6), (1, 2) and (5,3) ___

1 Answer

3 votes

Answer:

a) Acute triangle

b) Right triangle

Explanation:

∵ A triangle having sides a, b and c is called,

Acute : If a² + b² > c² or a² + c² > b² or b² + c² > a²,

Obtuse : if a² + b² < c² or a² + c² < b² or b² + c² < a²

Right : a² + b² = c² or a² + c² = b² or b² + c² = a²,

a) Let A≡(-1, 1), B≡(7,-2) and C≡(1,-5),

By the distance formula,


AB=√((7-(-1))^2+(-2-1)^2)=√((7+1)^2+(-3)^2)=√(8^2+3^2)=√(64+9)=√(73)\text{ unit}

Similarly,


BC=√(45)\text{ unit}


CA=√(40)\text{ unit}

∵ The sum of any two sides is greater than third side,

So, ABC is a triangle,

Now,


AB^2 + BC^2 > CA^2

ABC is an acute triangle.

b) Let P≡(0,6), Q≡(1,2) and R≡(5,3),

By the distance formula,

PQ = √17 unit,

QR = √17 unit,

RP = √34 unit,

∵ The sum of any two sides of PQR is greater than third side,

⇒ PQR is a triangle ,

Also,


RP^2=PQ^2+QR^2

Hence, PQR is a right triangle.

User RiffRaffCat
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories