9.3k views
2 votes
Calculate curls of the following vector functions (a) AG) 4x3 - 2x2-yy + xz2 2

User Juen
by
5.3k points

1 Answer

2 votes

Answer:

The curl is
0 \hat x -z^2 \hat y -4xy \hat z

Step-by-step explanation:

Given the vector function


\vec A (\vec r) =4x^3 \hat{x}-2x^2y \hat y+xz^2 \hat z

We can calculate the curl using the definition


\\abla * \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\A_x&X_y&A_z\end{array}\right|

Thus for the exercise we will have


\\abla * \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\4x^3&-2x^2y&xz^2\end{array}\right|

So we will get


\\abla  * \vec A (\vec r )= \left( \cfrac{\partial}{\partial y}(xz^2)-\cfrac{\partial}{\partial z}(-2x^2y)\right) \hat x - \left(\cfrac{\partial}{\partial x}(xz^2)-\cfrac{\partial}{\partial z}(4x^3) \right) \hat y + \left(\cfrac{\partial}{\partial x}(-2x^2y)-\cfrac{\partial}{\partial y}(4x^3) \right) \hat z

Working with the partial derivatives we get the curl


\\abla  * \vec A (\vec r )=0 \hat x -z^2 \hat y -4xy \hat z

User Dalvenjia
by
5.7k points