Answer : The correct option is, (D) 28.3 g/mole
Explanation :
Using ideal gas equation :
![PV=nRT\\\\PV=(w)/(M)RT](https://img.qammunity.org/2020/formulas/chemistry/college/anjbgdg0ap1wl24kai57k25t6s0duio2uy.png)
where,
P = pressure of gas = 5.00 atm
V = volume of gas = 4.75 L
T = temperature of gas =
![1227^oC=273+1227=1500K](https://img.qammunity.org/2020/formulas/chemistry/college/wox0w6q1irbd7qid6qul3nsdfewkid4mdm.png)
n = number of moles of gas
w = mass of gas = 5.45 g
M = molar mass of gas = ?
R = gas constant = 0.0821 L.atm/mol.K
Now put all the given values in the ideal gas equation, we get:
![(5.00atm)* (4.75L)=(5.45g)/(M)* (0.0821L.atm/mol.K)* (1500K)](https://img.qammunity.org/2020/formulas/chemistry/college/uxw4jbfbg2et47diasb577ksawcs7cz7jd.png)
![M=28.3g/mole](https://img.qammunity.org/2020/formulas/chemistry/college/3503h3kjjgpg5qlwmv6be1rxtby3qbimw5.png)
Therefore, the molar mass of the gas is 28.3 g/mole