Answer: A. (636.9, 653.1)
Explanation:
Given : Sample size : n=56
Significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
Critical value :
![z_(0.05)=1.96](https://img.qammunity.org/2020/formulas/mathematics/college/na5jowweyedt8qeuzkir9tnzxudusb1lbm.png)
Sample mean :
![\overline{x}=645\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/m6rjkqqv16kb86rqktxbdd6nrnxts1g96l.png)
Standard deviation :
![\sigma= 31\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/ntybuh3gt5be9r3vwjjtw09qj4078v6j9c.png)
The 95% confidence interval for population mean is given by :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))\\\\=645\pm (1.96)(31)/(√(56))\\\\=645\pm8.1\\\\=(636.9, 653.1)](https://img.qammunity.org/2020/formulas/mathematics/college/voqwvndn7um9jzkrh0jvxba5zffds2vkoj.png)
Hence, 95% confidence interval for population mean is (636.9, 653.1).