Answer :
The energy difference between parallel and anti parallel alignment of the z component of an electron's spin is
![4.45*10^(-24)\ J](https://img.qammunity.org/2020/formulas/physics/college/wsgwjh1z2gbyf6us6pq6z7tnf4uz9jo1ke.png)
Explanation :
Given that,
Magnetic field = 0.24 T
We need to calculate the energy difference between parallel and anti parallel alignment of the z component of an electron's spin
Using formula of energy difference between parallel and anti parallel alignment
![\Delta U=U_(2)-U_(1)](https://img.qammunity.org/2020/formulas/physics/college/3yodv6b65z4qezej92v6emboh6u38r727l.png)
![\Delta U=-\mu_(z)B\cos180^(\circ)-(-\mu_(z)B\cos0^(\circ))](https://img.qammunity.org/2020/formulas/physics/college/ow1urc9l5632jqn842d7o53ldd5aa5hdqm.png)
![\Delta U=2\mu_(z)B](https://img.qammunity.org/2020/formulas/physics/college/g1mymrpl41a15fy45uqft0y1qyf93upwee.png)
We know that,
The value of Bohr magneton is given by
![\mu_(z)=5.788*10^(-5)\ eV/T](https://img.qammunity.org/2020/formulas/physics/college/liaxflc8i99fha3w86uj2x2g7zhf9v3ax3.png)
![\mu_(z)=5.788*10^(-5)*1.6*10^(-19)\ J/T](https://img.qammunity.org/2020/formulas/physics/college/xy3wc5xcyvfhvcde5a0ckl33mkslytebc7.png)
![\mu_(z)=9.2608*10^(-24)\ J/T](https://img.qammunity.org/2020/formulas/physics/college/oq0egbneec0tzvkulvleobtkjwmr0h3ekk.png)
Put the value into the formula
![\Delta U=2*9.2608*10^(-24)*0.24](https://img.qammunity.org/2020/formulas/physics/college/vzv81npe6qbuxy9dz7mkptggskaejvc9ox.png)
![\Delta U=4.45*10^(-24)\ J](https://img.qammunity.org/2020/formulas/physics/college/1794fzl678wun49aiqej9rbgug70utpkug.png)
Hence, The energy difference between parallel and anti parallel alignment of the z component of an electron's spin is
![4.45*10^(-24)\ J](https://img.qammunity.org/2020/formulas/physics/college/wsgwjh1z2gbyf6us6pq6z7tnf4uz9jo1ke.png)