Answer:
Required diameter of hose pipe = 0.2864 mm
Solution:
From the continuity eqn, the fluid flow rate is given by:
Av =
![(V)/(t)](https://img.qammunity.org/2020/formulas/physics/college/a7gggsv7mb4o49yr7rg58w7dvzsf9bdsvh.png)
where
A = cross-sectional area =
![\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jbq7l9lw0tfwhmngy40fg4vq26fc4vapd0.png)
r = hose pipe radius
v = velocity of gas
Also,
![v = (displacement, d)/(time, t)](https://img.qammunity.org/2020/formulas/physics/college/7rwticpys20anw8yq0ijvfzhbj9d8bwdp8.png)
Using:
1 gallon = 3.854 l
1 mile = 1609.34 m
![1 m^(3) = 1000 l](https://img.qammunity.org/2020/formulas/physics/college/wydn83mqb6e1elc39oawh8kiwyo8x5dhy2.png)
Therefore,
![A(d)/(t) = (V)/(t)](https://img.qammunity.org/2020/formulas/physics/college/q88zeyyztlqtv2eekajfrxfhqxhx8326bc.png)
![\pi r^(2) = (V)/(d)](https://img.qammunity.org/2020/formulas/physics/college/k4hkhbd3v2jlxrsa1oq1c84ok0e51ah61s.png)
![\pi r^(2) = ((1 gal).((3.7854 l)/(gal)).((10^(- 3) m^(3))/(l)))/(37 miles((1609.34 m)/(miles)))](https://img.qammunity.org/2020/formulas/physics/college/99vjflbgi073iq4iblb9paswos5jn1c8jo.png)
![6.357* 10^(- 8) = \pi r^(2)](https://img.qammunity.org/2020/formulas/physics/college/9cny2d9773npxx9c7rmo4o8iwkeguzig6g.png)
![r^(2) = 2.024* 10^(- 8)](https://img.qammunity.org/2020/formulas/physics/college/n0mvnjvq7gn8j1n1p6oxlhbmpn4hm24zwe.png)
![r = 1.423* 10^(- 4) m = 0.1423 mm](https://img.qammunity.org/2020/formulas/physics/college/d3g3s1iit8iglhmok64fxuz22ni2ogu3i0.png)
The diameter of the hose pipe = 2r =
![2* 1.423* 10^(- 4)](https://img.qammunity.org/2020/formulas/physics/college/111oln9fnfx854lyolt739v2zzoswn1wf6.png)
The diameter of the hose pipe =
![2.846* 10^(- 4) m = 0.2846 mm](https://img.qammunity.org/2020/formulas/physics/college/6goy23nrniryg51spja88w5ht0gerkgqiv.png)