36.3k views
1 vote
Prove the following limit equals 3 when neN lim[(3n+1)/n] as n → Use the definition of a limit (4.1.2)

User Shabria
by
4.9k points

1 Answer

5 votes

Explanation:

the function
f(n) = (3n +1 )/(n) equals 3 only in
x = \infty and
x = -\infty.

Prove:


\lim\limits_(n \to \pm\infty) (3n +1)/(n) = \lim\limits_(n \to \pm\infty) \left((3n)/(n) + (1)/(n)\right)

then


\lim\limits_(n \to \pm\infty) \left(\frac{3\\ot{n}}{\\ot{n}} + (1)/(n)\right) = \lim\limits_(n \to \pm\infty) 3 + (1)/(n)

and


\lim\limits_(n \to \pm\infty) 3 + \\ot{(1)/(n)^0} = 3

User Slavatron
by
4.6k points