Answer:
![2.14(10)^(16) m^(3)](https://img.qammunity.org/2020/formulas/geography/college/7ls1qis7g43vtp03ag1k86mzqyzen1265g.png)
Step-by-step explanation:
Assuming the cuboid has the following dimensions:
Width (W):
![1.9(10)^(7) m](https://img.qammunity.org/2020/formulas/geography/college/lkgtbdbfdlj081pr6wc9ip5wkaks596v6r.png)
Length (L):
![1.9(10)^(7) m](https://img.qammunity.org/2020/formulas/geography/college/lkgtbdbfdlj081pr6wc9ip5wkaks596v6r.png)
Height (H):
![3700 m](https://img.qammunity.org/2020/formulas/geography/college/rfblytrv5my38nm2evafrmxuk39k8ndr42.png)
Its volume is:
![V=(W)(L)(H)](https://img.qammunity.org/2020/formulas/geography/college/vkqgrbvs27cwf29cxs30zwn5d4mm0kbt05.png)
![V=(1.9(10)^(7) m)(1.9(10)^(7) m)(3700m)](https://img.qammunity.org/2020/formulas/geography/college/bfpycz62exzi61hbgt118uumlu5w22o88l.png)
![V=1.34(10)^(18)m^(3)](https://img.qammunity.org/2020/formulas/geography/college/r8mm9tx7a4ybz0389r9l2d3it0srbvmbre.png)
Now, if we want to know what is the
of this volume, we have to do the following:
This is the 1.6 % of the volume of the cuboid