Answer: 1.2703
Explanation:
Given : Sample size : n= 17, which is a small sample (n<30), so we use t-test.
Significance level :
![\alpha:1-0.90=0.1](https://img.qammunity.org/2020/formulas/mathematics/college/6aieijzohp3d2x4esm76xxo92fqu5nerz4.png)
Then , Critical value :
![t_(n-1,\alpha/2)=t_(16, 0.05)\pm1.745884](https://img.qammunity.org/2020/formulas/mathematics/college/vfh3r3ujbhswl5ozam5zuopbtbl0jjir3a.png)
Standard deviation:
![s=3\text{ inches}](https://img.qammunity.org/2020/formulas/mathematics/college/b0dps89opb8t93lg81aawr2o3nf1qmn7tr.png)
The formula to find the margin of error : -
![E=t_(n-1,\alpha/2)(s)/(√(n))\\\\\Rightarrow\ E=(1.745884)(3)/(√(17))\\\\\Rightarrow\ E=01.27031720154\approx1.2703](https://img.qammunity.org/2020/formulas/mathematics/college/qjmkxomqjve53vbfpwl9mmhv7040hw37ts.png)
Hence, the error bound (EBM) of the confidence interval with a 90% confidence level.=1.2703