Answer:
![\text{Volume of cylinder}=16\pi\text{ cm}^3\approx 50.27\text{ cm}^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f8169n96kp5rmzz8qs1ckcp0nv5mvct1zw.png)
Explanation:
We have been given that the the largest possible cylinder is carved out from a cube of sides 4 cm each.
Since the cylinder is carved out from a cube of sides 4 cm each, so diameter and height of cylinder would be 4 cm each.
![\text{Volume of cylinder}=\pi r^2h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lksb7tb61jof9yq4skqrnyn2vfsoihuxqz.png)
![r=(d)/(2)=(4)/(2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4vg5eqqdfs65kn7uhgyfiv1i7ndhysmehz.png)
![\text{Volume of cylinder}=\pi (\text{2 cm})^2* \text{4 cm}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/igpc3q1az75v9ccjw8hrb3ql1cl11qg1wb.png)
![\text{Volume of cylinder}=\pi*4\text{ cm}^2* \text{4 cm}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hg19oa32ssk5vbesxnzcxac2d89bnmci3r.png)
![\text{Volume of cylinder}=\pi*16\text{ cm}^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/phvpfgs3wy0dj8mh0lj8cdm2zb8opw924x.png)
![\text{Volume of cylinder}=50.265482457\text{ cm}^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/45iq6ubx0edpu07xeljrll791bsg6wtt5v.png)
![\text{Volume of cylinder}\approx 50.27\text{ cm}^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/btsq4fadxg6slajex4fgzwjse7dzc9p1f7.png)
Therefore, the volume of the cylinder is approximately 50.27 cubic cm.