214k views
2 votes
Three collinear points on the coordinate plane are r(x,y), s(x+8h, y+8k), and p (x+6h, y+6k)

1 Answer

3 votes

Answer:

A.
(RP)/(SP)=3

B.
(RP)/(RS)=(3)/(4)

Step-by-step explanation:

The complete question is

Three collinear points on the coordinate plane are R(x, y), S(x+8h, y+8k), and P(x+6h, y+6k).

Part A: Determine the value of RP/SP

Part B: Determine the value of RP/RS

we know that

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

we have


R(x,y),S(x+8h,y+8k) and P(x+6h,y+6k)

Part A.We have to find the value of
(RP)/(SP)

step 1

Find the distance RP


R(x,y),P(x+6h,y+6k)

substitute the values in the formula


RP=√((x+6h-x)^2+(y+6k-y)^2)


RP=√(36h^2+36 k^2)


RP=6√(h^2+k^2)

step 2

Find the distance SP


S(x+8h,y+8k),P(x+6h,y+6k)

substitute the values in the formula


SP=√((x+6h-x-8h)^2+(y+6k-y-8k)^2)


SP=√(4h^2+4k^2)


SP=√(4(h^2+k^2))


SP=2√(h^2+k^2)

step 3

Find the ratio RP/SP


(RP)/(SP)=(6√(h^2+k^2))/(2√(h^2+k^2))


(RP)/(SP)=3

Part B. We have to determine the value of
(RP)/(RS)

step 1

Find the distance RS


R(x,y),S(x+8h,y+8k)


RS=√((x+8h-x)^2+(y+8k-y)^2)


RS=√(64h^2+64k^2)


RS=√(64(h^2+k^2))


RS=8√(h^2+k^2)

step 2

Find the ratio RP/RS


(RP)/(RS)=(6√(h^2+k^2))/(8√(h^2+k^2))


(RP)/(RS)=(3)/(4)

User Jianwu Chen
by
5.9k points