Answer:
A.
![(RP)/(SP)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x811c8pfxnzlgxzigudjnjsnpqtkoo3eqy.png)
B.
![(RP)/(RS)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/imguxuc37pc78o1pbx3quyl2rcid9cozia.png)
Step-by-step explanation:
The complete question is
Three collinear points on the coordinate plane are R(x, y), S(x+8h, y+8k), and P(x+6h, y+6k).
Part A: Determine the value of RP/SP
Part B: Determine the value of RP/RS
we know that
the formula to calculate the distance between two points is equal to
![d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cludwa9rlbp5l9xccb2d39dpew3fngh0ii.png)
we have
![R(x,y),S(x+8h,y+8k) and P(x+6h,y+6k)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zy3fhz0d9sq6twgg1l9q68yzje7oplg0js.png)
Part A.We have to find the value of
![(RP)/(SP)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tgm5ts4xpk8eq2dyxh1x0dv4jyjaax19g2.png)
step 1
Find the distance RP
![R(x,y),P(x+6h,y+6k)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6snkx4degk9vizenkfnc34ko751eya24qc.png)
substitute the values in the formula
![RP=√((x+6h-x)^2+(y+6k-y)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aqomartzlka9za4d0w7yrrapn1yfmbo8yv.png)
![RP=√(36h^2+36 k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wpfyuuppljzaolwmr44hubd5qh99a1mzti.png)
![RP=6√(h^2+k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8lfyjxf7n80z4j3u2b6uk51ow2njvn4zmk.png)
step 2
Find the distance SP
![S(x+8h,y+8k),P(x+6h,y+6k)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rsfutu7fjn60tce1utweplhsmn3y34yzfi.png)
substitute the values in the formula
![SP=√((x+6h-x-8h)^2+(y+6k-y-8k)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r5wkp53rxvdqjjvh5do0v71e0jlj10bt0f.png)
![SP=√(4h^2+4k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wsc7ap6ymz90jl9gy3xtay9h5333l6rg6d.png)
![SP=√(4(h^2+k^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/50fz4o5ypogoi5msezwmdeq8tbsjavzj6s.png)
![SP=2√(h^2+k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h8vnweolktbsuk3p3vvh1fg9tn7ftwbze6.png)
step 3
Find the ratio RP/SP
![(RP)/(SP)=(6√(h^2+k^2))/(2√(h^2+k^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/72n1057q0xv2lwsake74j0tsuu8gjttqli.png)
![(RP)/(SP)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x811c8pfxnzlgxzigudjnjsnpqtkoo3eqy.png)
Part B. We have to determine the value of
![(RP)/(RS)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5mj97ok3sobpkurjyt6ph987m2a9r1sly4.png)
step 1
Find the distance RS
![R(x,y),S(x+8h,y+8k)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ihea6rmrbm4bhhrlibfq8a48vo1xg5i5by.png)
![RS=√((x+8h-x)^2+(y+8k-y)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/af90laei0fn621wn37okuj4u6s2e75wkgn.png)
![RS=√(64h^2+64k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g37wonidbcpt69xdixksud6tmhtsiysjj5.png)
![RS=√(64(h^2+k^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t17hvy7s34e9n5prvkrzpsy7r3obbn0put.png)
![RS=8√(h^2+k^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rm5fg1x77g7abtc7cl71acr5djalhila5r.png)
step 2
Find the ratio RP/RS
![(RP)/(RS)=(6√(h^2+k^2))/(8√(h^2+k^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qlzjjm9clpj7kqz0o9il2gr55z6lb5przr.png)
![(RP)/(RS)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/imguxuc37pc78o1pbx3quyl2rcid9cozia.png)