182k views
4 votes
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(5x) based at 0.

1 Answer

7 votes

Presumably you know the Taylor series for
\cos x to be


\cos x=\displaystyle\sum_(n=0)^\infty((-1)^n)/((2n)!)x^(2n)

We have by the double angle identity


\sin^2\theta=\frac{1-\cos(2\theta)}2

So


\sin^2(5x)=\frac{1-\cos(10x)}2

and substituting
10x for
x in the Taylor series above gives


\cos(10x)=\displaystyle\sum_(n=0)^\infty((-1)^n)/((2n)!)(10x)^(2n)=\sum_(n=0)^\infty((-100)^n)/((2n)!)x^(2n)


\implies\boxed{\sin^2(5x)=\displaystyle\frac12-\frac12\sum_(n=0)^\infty((-100)^n)/((2n)!)x^(2n)}

User Himal
by
8.0k points