Answer:
The claim is false that the mean temperature of humans is less than 98.6°F
Explanation:
Claim :The mean temperature of humans is less than 98.6°F
![H_0:\mu \geq 98.6^(\circ)F\\H_a:\mu< 98.6^(\circ)F](https://img.qammunity.org/2020/formulas/mathematics/college/iv0x1caper42j4ds1lf1r6hub2qc9ysen3.png)
They obtained 200 measurements
Sample size n =200
x = 98.3°F
![\sigma = 11^(\circ)F](https://img.qammunity.org/2020/formulas/mathematics/college/gfc8uosugwta80t8h94ed60tzp1ij8wjhq.png)
Since n > 30
So we will use z test
Formula :
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/koo3vbzftnm9iwwkp1kt7ykogz7qj15wyh.png)
Substitute the values in the formula :
![z=(98.3-98.6)/((11)/(√(200)))](https://img.qammunity.org/2020/formulas/mathematics/college/fiond5whqzrotfpwxytc7a4i5ad0q7i9vy.png)
![z=−0.385](https://img.qammunity.org/2020/formulas/mathematics/college/xyp5qclmlxh9u50dwwx0trutgkxoju9j8e.png)
Refer the z table for p value
p value = 0.3520
α= 0.01
p value > α
So, we accept the null hypothesis.
So, the claim is false that the mean temperature of humans is less than 98.6°F .