10.9k views
5 votes
IfYis a uniformly distributed random variable over (0,5), what isthe probability that the roots of the equation 4x2+ 4xY+Y+ 2 = 0 are both real?

1 Answer

5 votes

The given quadratic has real roots if its discriminant is non-negative, so the probability is


P(16Y^2-16(Y+2)\ge0)=P(16Y^2-16Y-32\ge0)


=P(Y^2-Y-2\ge0)

Complete the square:


Y^2-Y-2=Y^2-Y+\frac14-\frac94=\left(Y-\frac12\right)^2-\frac94


\implies P(Y^2-Y-2\ge0)=P\left(\left(Y-\frac12\right)^2-\frac94\ge0\right)


=P\left(\left(Y-\frac12\right)^2\ge\frac94\right)


=P\left(\left|Y-\frac12\right|\ge\frac32\right)


=P\left(Y-\frac12\ge\frac32\text{ and }Y-\frac12\ge-\frac32\right)


=P\left(Y\ge2\text{ and }Y\ge-1\right)


=P\left(Y\ge2\right)


=\displaystyle\int_2^\infty f_Y(y)\,\mathrm dy

where
f_Y(y) is the PDF of
Y,


f_Y(y)=\begin{cases}\frac15&\text{for }0\le y\le5\\0&\text{otherwise}\end{cases}


\implies P(Y\ge2)=\displaystyle\int_2^5\frac{\mathrm dy}5=\boxed{\frac35}

User SamGbos
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories