Answer: 0.2119
Explanation:
We assume that the random variable X is normally distributed.
Given : Population mean :
![\mu=100](https://img.qammunity.org/2020/formulas/mathematics/college/9c1djus40auembea9hlrd8w6tgsvwwkdu4.png)
Standard deviation :
![\sigma=20](https://img.qammunity.org/2020/formulas/mathematics/college/6r91mhm2ylarm0euykwlcp8bjgivwqw1js.png)
Z-score :
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
Then, z-score corresponds to 116
![z=(116-100)/(20)=0.8](https://img.qammunity.org/2020/formulas/mathematics/college/nmnaali85df1780fjiyuu7d20j16yffcec.png)
By using the standard normal distribution table for z , we have
![P(x>116)=P(z>0.8)=1-P(z\leq0.8)](https://img.qammunity.org/2020/formulas/mathematics/college/jaojjjntcnu6z65gb8u0a7rzuo8virt9k9.png)
![=1-0.7881446\approx0.2119](https://img.qammunity.org/2020/formulas/mathematics/college/9bzeutcoc26qw5ody3x155gmqw9shhsj87.png)
Hence, the required probability = 0.2119