85.3k views
1 vote
Suppose that a sample space has five equally likely experimental outcomes: E1, E2, E3, E4, E5. Let A = {E1, E2} B = {E3, E4} C = {E2, E3, E5}

a. Find P(A), P(B), and P(C).
b. Find P(A U B). Are A and B mutually exclusive?
c. Find A^c, C^c, P(A^c), and P(C^c).
d. Find A U B^c and P(A U B^c).
e. Find P(BUC).

User Stevenl
by
6.0k points

2 Answers

2 votes

Answer with Step-by-step explanation:

We are given that a sample space=S={
E_1,E_2,E_3,E_4,E_5}

A={
E_1,E_2}

B={
E_3,E_4}

C={
E_2,E_3,E_5}

a.We have to find P(A),P(B) and P(C)

We know that probability=
(Number\;of \;favorable\;events)/(total\;number\;of outcomes)

Total number of outcomes=5

Number of outcomes favorable to event A=2

Number of outcomes favorable to event B=2

Number of outcomes favorable to event C=3

Therefore, P(A)=
(2)/(5)


P(B)=(2)/(5)


P(C)=(3)/(5)

b.
A\cup B}={
E_1,E_2,E_3,E_4}


A\cap B=\phi


P(A\cup B)=(4)/(5)

Yes, A and B are mutually exclusive because A and B are disjoint events.

c.
A^c={
E_3,E_4,E_5}


C^c={
E_1,E_4}


P(A^c)=(3)/(5)


P(C^c}=(2)/(5)

d.
B^c={
E_1,E_2,E_5}


A\cup B^c={
E_1,E_2,E_5}


P(A\cup B^c)=(3)/(5)

e.
B\cup C={
E_2,E_3,E_4,E_5}


P(B\cup C)=(4)/(5)

User Nourah
by
5.2k points
4 votes

Answer:

Given information: U = {E1, E2, E3, E4, E5}, A = {E1, E2} B = {E3, E4} C = {E2, E3, E5}

Total number of outcome = 5

From the given information, we get


n(U)=5,n(A)=2, n(B)=2, n(C)=3

Formula for probability:


Probability=\frac{\text{Number of favorable outcomes}}{\text{Number of total outcomes}}

(a)


P(A)=(n(A))/(n(U))=(2)/(5)


P(B)=(n(B))/(n(U))=(2)/(5)


P(C)=(n(C))/(n(U))=(3)/(5)

(b)

We need to find P(A U B) if A and B are mutually exclusive.


P(A\cap B)=0


P(A\cup B)=P(A)+P(B)-P(A\cap B)


P(A\cup B)=P(A)+P(B)


P(A\cup B)=(2)/(5)+(2)/(5)=(4)/(5)

(c)


A^c=U-A=\{E1, E2, E3, E4, E5\}-\{E1, E2\}=\{E3, E4, E5\}

Number of elements in
A^c = 3


n(A^c)=3


P(A^c)=(n(A^c))/(n(U))=(3)/(5)


C^c=U-C=\{E1, E2, E3, E4, E5\}-\{E2, E3, E5\}=\{E1, E4\}

Number of elements in
C^c = 2


n(C^c)=2


P(C^c)=(2)/(5)

(d)


A\cup B^c=A+B^c=\{E1, E2\}+\{E1, E2,E5\}=\{E1, E2,E5\}


P(A\cup B^c)=(n(C^c))/(n(U))=(3)/(5)

(e)


B\cup C=B+C=\{E3, E4\}+\{E2, E3, E5\}=\{E2, E3, E4, E5\}


n(B\cup C)=4

So,


P(B\cup C)=(n(B\cup C))/(n(U))=(4)/(5)

User Bgibson
by
5.3k points