Answer:
Given information: U = {E1, E2, E3, E4, E5}, A = {E1, E2} B = {E3, E4} C = {E2, E3, E5}
Total number of outcome = 5
From the given information, we get
![n(U)=5,n(A)=2, n(B)=2, n(C)=3](https://img.qammunity.org/2020/formulas/mathematics/college/wn3cv6i52usu8z9nhmve85tlmlacrgbarh.png)
Formula for probability:
![Probability=\frac{\text{Number of favorable outcomes}}{\text{Number of total outcomes}}](https://img.qammunity.org/2020/formulas/mathematics/college/ge9ttkfuouktjkjijjcykfrzinp58pweee.png)
(a)
![P(A)=(n(A))/(n(U))=(2)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/ncqr9l8f9xzq5qj2sp6lj3lebyfrnxw9v9.png)
![P(B)=(n(B))/(n(U))=(2)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/3mkd8o3s82zqfni9ta7qraihr0nyjzmz23.png)
![P(C)=(n(C))/(n(U))=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/9bnfienr49g0ib9mmubopqyjpmowob8yxd.png)
(b)
We need to find P(A U B) if A and B are mutually exclusive.
![P(A\cap B)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kb8vanz42qxgrchenuidcwup76ij6yfbyx.png)
![P(A\cup B)=P(A)+P(B)-P(A\cap B)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hjvmv4ll3g25188919dtl3ycbphwrvckcc.png)
![P(A\cup B)=P(A)+P(B)](https://img.qammunity.org/2020/formulas/mathematics/college/qjnhwfhwax9vdum9nr1b8hc7sxh6n835wa.png)
![P(A\cup B)=(2)/(5)+(2)/(5)=(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/tcaewhy361bllns6c1rxfok3jp48454v6g.png)
(c)
![A^c=U-A=\{E1, E2, E3, E4, E5\}-\{E1, E2\}=\{E3, E4, E5\}](https://img.qammunity.org/2020/formulas/mathematics/college/f1u4hr0x0ijril36syr5d76kvc566b6lfh.png)
Number of elements in
= 3
![n(A^c)=3](https://img.qammunity.org/2020/formulas/mathematics/college/g20wzzvut5ouezsdahlnglw7qauh0gms28.png)
![P(A^c)=(n(A^c))/(n(U))=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/kygxwm4mbn6l6nfp68lba3d61dg0mktz1r.png)
![C^c=U-C=\{E1, E2, E3, E4, E5\}-\{E2, E3, E5\}=\{E1, E4\}](https://img.qammunity.org/2020/formulas/mathematics/college/fs4pgypjp1brpunotbxq5kti3hpra28dky.png)
Number of elements in
= 2
![n(C^c)=2](https://img.qammunity.org/2020/formulas/mathematics/college/kv9lmnnc4hg8p1zi1r9bc3wgkb0iym469i.png)
![P(C^c)=(2)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/6pa4owdlk7vw55ejfqecekfm90ci2omzko.png)
(d)
![A\cup B^c=A+B^c=\{E1, E2\}+\{E1, E2,E5\}=\{E1, E2,E5\}](https://img.qammunity.org/2020/formulas/mathematics/college/cs8h6vcz4h1jesgvswrg5c7f7j9jyyzb2u.png)
![P(A\cup B^c)=(n(C^c))/(n(U))=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/7tgj47f4ufuo0ebp858wk6vnwf0jao0lpr.png)
(e)
![B\cup C=B+C=\{E3, E4\}+\{E2, E3, E5\}=\{E2, E3, E4, E5\}](https://img.qammunity.org/2020/formulas/mathematics/college/sqy46ta3ir4dfx1pinlhzjpogal8kko7yj.png)
![n(B\cup C)=4](https://img.qammunity.org/2020/formulas/mathematics/college/pzldjaz3g49yfcexbb8kv7d79p4g51924u.png)
So,
![P(B\cup C)=(n(B\cup C))/(n(U))=(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/c0bks250hdqbh1gbes4dqnw8p85d87fi1o.png)