154k views
19 votes
F(x) = 3x3- 2x2 + 42 - 5
g(x) = 6x – 7

2 Answers

0 votes

Answer: The functions f(x) and g(x) are given by the following: f(x) ... $(8)223. (c) Find gf(x) gf (1) = 2(3x-1) +4. 9f (2) - 62-2+4. 1. = 6xta. If(x) : 6x+2 ... 2 fg/113 4x' +42-2 gh(x) = x+). (C) Find f-1(x) y X-3. -. (2). 4+3=X? -1/2) = 5x+3 ... 7. f(x) = 2x2 – 1.=3

Explanation:

User Suman Banerjee
by
3.6k points
5 votes

The composite function (f + g)(x) is (f + g)(x) = 3x³ - 2x² + 10x - 12

How to evaluate the composite function

From the question, we have the following parameters that can be used in our computation:

f(x) = 3x³ - 2x² + 4x - 5

Also, we have

g(x) = 6x - 7

The composite function (f + g)(x) is calculated using

(f + g)(x) = f(x) + g(x)

Substitute the known values into the equation

(f + g)(x) = 3x³ - 2x² + 4x - 5 + 6x - 7

Evaluate

(f + g)(x) = 3x³ - 2x² + 10x - 12

hence, the composite function is (f + g)(x) = 3x³ - 2x² + 10x - 12

Question

f(x)=3x3-2x2+4x-5

G(x)=6x-7

Find (f + g)(x)

User Stevetro
by
3.3k points